categorical_crossentropy损失函数
时间: 2024-05-21 18:15:51 浏览: 86
CWRU_Condition2_dataset_loss_
categorical_crossentropy是一种用于多分类问题的损失函数。它基于交叉熵(cross-entropy)原理,于衡量分类问题中模型预测结果与真实结果之间差异。
在使用categorical_crossentropy时,通常需要将真实结果进行one-hot编码,将多分类问题转化为多个二分类问题,然后计算每个类别的交叉熵损失,并将它们相加得到最终的损失值。
categorical_crossentropy的公式如下:
$loss(y_{true}, y_{pred}) = -\sum_{i=1}^{C} y_{true,i} \log(y_{pred,i})$
其中,$C$表示类别数,$y_{true}$是one-hot编码的真实标签,$y_{pred}$是模型预测的概率分布。
通过最小化categorical_crossentropy损失函数,模型可以逐渐优化预测结果,提高分类准确率。
阅读全文