还报错 output = net(x.unsqueeze(1)) # 将数据维度转换为(batch_size, in_channels, sequence_length) NameError: name 'net' is not defined
时间: 2024-02-10 12:10:33 浏览: 84
这个错误提示是因为你没有定义 `net` 这个变量。在代码中,`net` 是卷积神经网络模型的一个实例,需要先创建这个实例,才能使用。你可以将模型定义的代码放在数据生成的代码之前,创建一个 `net` 的实例,如下所示:
```python
import torch
import torch.nn as nn
# 定义一维卷积神经网络模型
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3) # 第一层卷积,输入通道数为1,输出通道数为16,卷积核大小为3
self.relu = nn.ReLU() # 激活函数ReLU
self.pool = nn.MaxPool1d(kernel_size=2) # 最大池化层,池化核大小为2
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3) # 第二层卷积,输入通道数为16,输出通道数为32,卷积核大小为3
self.fc = nn.Linear(in_features=1568, out_features=10) # 全连接层,输入特征数为1568,输出特征数为10
def forward(self, x):
x = self.conv1(x) # 第一层卷积
x = self.relu(x) # ReLU激活函数
x = self.pool(x) # 最大池化
x = self.conv2(x) # 第二层卷积
x = self.relu(x) # ReLU激活函数
x = self.pool(x) # 最大池化
x = x.view(x.size(0), -1) # 展开成一维向量
x = self.fc(x) # 全连接层
return x
# 生成正弦函数数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = torch.sin(x * 2 * 3.1416) + torch.randn(x.size())
# 创建卷积神经网络模型实例
net = ConvNet()
# 将数据维度转换为(batch_size, in_channels, sequence_length)
output = net(x.unsqueeze(1))
```
这样就可以避免上述的错误提示。
阅读全文