c语言单链表实现一元多项式相加

时间: 2023-06-08 09:04:19 浏览: 60
好的,我可以回答这个问题。单链表可以作为存储一元多项式的一种数据结构。相加两个一元多项式的方法是将两个一元多项式中相同次数的项相加,得到新的一元多项式。 具体步骤如下: 1. 定义一个单链表数据结构来存储一元多项式。 2. 读入两个一元多项式并分别存储到两个单链表中。 3. 遍历两个链表,将相同次数的项相加,将结果存储到一个新的链表中。 4. 如果一个链表遍历完了而另一个链表还有剩余的项,将这些项直接添加到新链表中。 5. 输出新链表中的每一项,即为相加的结果。 代码实现可参考下面示例: ``` #include <stdio.h> #include <stdlib.h> typedef struct node { int coeff; //系数 int expn; //指数 struct node *next; } Node; Node* CreateList(); //创建链表 Node* InputPoly(); //输入一元多项式 void AddPoly(Node*, Node*, Node*); //相加两个一元多项式 void PrintPoly(Node*); //输出一元多项式 int main() { Node *A, *B, *C; A = InputPoly(); B = InputPoly(); C = CreateList(); AddPoly(A, B, C); PrintPoly(C); return 0; } Node* CreateList() { Node *L = (Node*)malloc(sizeof(Node)); L->next = NULL; return L; } Node* InputPoly() { Node *L = CreateList(); Node *r = L; int n, coeff, expn; printf("请输入一元多项式的项数:"); scanf("%d", &n); printf("请按照指数递减的顺序输入各项系数和指数:\n"); while(n--) { Node *p = (Node*)malloc(sizeof(Node)); scanf("%d%d", &coeff, &expn); p->coeff = coeff; p->expn = expn; r->next = p; r = p; } r->next = NULL; return L; } void AddPoly(Node *A, Node *B, Node *C) { Node *pa = A->next, *pb = B->next; Node *pc = C; while(pa && pb) { Node *p = (Node*)malloc(sizeof(Node)); if(pa->expn == pb->expn) { p->coeff = pa->coeff + pb->coeff; p->expn = pa->expn; pa = pa->next; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else if(pa->expn > pb->expn) { p->coeff = pa->coeff; p->expn = pa->expn; pa = pa->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else { p->coeff = pb->coeff; p->expn = pb->expn; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } } pc->next = pa ? pa : pb; } void PrintPoly(Node *L) { Node *p = L->next; while(p) { printf("%dX^%d", p->coeff, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } ```

相关推荐

下面是单链表实现一元多项式的基本操作的C++代码: cpp #include<iostream> using namespace std; struct node { int coef; // 系数 int exp; // 指数 node *next; // 下一个节点 }; class Polynomial { private: node *head; // 链表头节点 public: // 构造函数 Polynomial() { head = new node; head->next = NULL; } // 析构函数 ~Polynomial() { node *temp = head->next; while (temp != NULL) { node *p = temp; temp = temp->next; delete p; } delete head; } // 插入节点 void insert(int coef, int exp) { node *p = new node; p->coef = coef; p->exp = exp; p->next = NULL; node *temp = head; while (temp->next != NULL && temp->next->exp > exp) { temp = temp->next; } if (temp->next != NULL && temp->next->exp == exp) { temp->next->coef += coef; if (temp->next->coef == 0) { node *q = temp->next; temp->next = q->next; delete q; } } else { p->next = temp->next; temp->next = p; } } // 输出多项式 void print() { node *temp = head->next; while (temp != NULL) { if (temp != head->next && temp->coef > 0) { cout << "+"; } if (temp->coef != 1 || temp->exp == 0) { cout << temp->coef; } if (temp->exp > 0) { cout << "x^" << temp->exp; } temp = temp->next; } cout << endl; } // 多项式加法 Polynomial add(Polynomial b) { Polynomial c; node *p = head->next; node *q = b.head->next; while (p != NULL && q != NULL) { if (p->exp > q->exp) { c.insert(p->coef, p->exp); p = p->next; } else if (p->exp < q->exp) { c.insert(q->coef, q->exp); q = q->next; } else { c.insert(p->coef + q->coef, p->exp); p = p->next; q = q->next; } } while (p != NULL) { c.insert(p->coef, p->exp); p = p->next; } while (q != NULL) { c.insert(q->coef, q->exp); q = q->next; } return c; } // 多项式减法 Polynomial sub(Polynomial b) { Polynomial c; node *p = head->next; node *q = b.head->next; while (p != NULL && q != NULL) { if (p->exp > q->exp) { c.insert(p->coef, p->exp); p = p->next; } else if (p->exp < q->exp) { c.insert(-q->coef, q->exp); q = q->next; } else { c.insert(p->coef - q->coef, p->exp); p = p->next; q = q->next; } } while (p != NULL) { c.insert(p->coef, p->exp); p = p->next; } while (q != NULL) { c.insert(-q->coef, q->exp); q = q->next; } return c; } // 多项式乘法 Polynomial mul(Polynomial b) { Polynomial c; node *p = head->next; while (p != NULL) { node *q = b.head->next; while (q != NULL) { int coef = p->coef * q->coef; int exp = p->exp + q->exp; c.insert(coef, exp); q = q->next; } p = p->next; } return c; } }; int main() { Polynomial a, b, c; int n, coef, exp; cout << "输入第一个多项式的项数:" << endl; cin >> n; cout << "输入第一个多项式的系数和指数:" << endl; for (int i = 0; i < n; i++) { cin >> coef >> exp; a.insert(coef, exp); } cout << "第一个多项式为:" << endl; a.print(); cout << "输入第二个多项式的项数:" << endl; cin >> n; cout << "输入第二个多项式的系数和指数:" << endl; for (int i = 0; i < n; i++) { cin >> coef >> exp; b.insert(coef, exp); } cout << "第二个多项式为:" << endl; b.print(); c = a.add(b); cout << "两个多项式的和为:" << endl; c.print(); c = a.sub(b); cout << "两个多项式的差为:" << endl; c.print(); c = a.mul(b); cout << "两个多项式的积为:" << endl; c.print(); return 0; } 在该代码中,node 结构体表示链表节点,包含系数、指数和下一个节点指针。Polynomial 类表示多项式,包含链表头节点和一些基本操作函数,例如插入节点、输出多项式、多项式加法、多项式减法、多项式乘法等。在主函数中,用户输入两个多项式的项数、系数和指数,然后执行加、减、乘操作,并输出结果。
#include <stdio.h> #include <stdlib.h> struct node { // 定义节点结构体 int coef; // 系数 int exp; // 指数 struct node *next; // 指向下一个节点的指针 }; typedef struct node Node; Node* create_node(int coef, int exp) { // 创建一个节点 Node *new = (Node*)malloc(sizeof(Node)); new->coef = coef; new->exp = exp; new->next = NULL; return new; } Node* add_poly(Node *poly1, Node *poly2) { // 两个多项式相加 Node *head = create_node(0, 0); // 头结点,作为新的多项式的起点 Node *p1 = poly1, *p2 = poly2, *p3 = head; while (p1 != NULL && p2 != NULL) { if (p1->exp > p2->exp) { // 计算结果多项式的该项为第一个多项式的当前项 p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { // 计算结果多项式的该项为第二个多项式的当前项 p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; } else { // 计算结果多项式的该项为两个多项式的当前项之和,系数相加 p3->next = create_node(p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } p3 = p3->next; } // 处理没有计算过的多项式项 while (p1 != NULL) { p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; p3 = p3->next; } while (p2 != NULL) { p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; p3 = p3->next; } return head->next; // 返回新的多项式 } void print_poly(Node *poly) { // 输出多项式 Node *p = poly; while (p != NULL) { printf("%dX^%d ", p->coef, p->exp); if (p->next != NULL && p->next->coef > 0) { printf("+ "); } p = p->next; } printf("\n"); } int main() { Node *poly1, *poly2, *result; // 创建第一个多项式 poly1 = create_node(3, 5); poly1->next = create_node(-2, 3); poly1->next->next = create_node(1, 1); // 创建第二个多项式 poly2 = create_node(2, 4); poly2->next = create_node(-7, 3); poly2->next->next = create_node(4, 1); result = add_poly(poly1, poly2); // 两个多项式相加 printf("多项式1:"); print_poly(poly1); // 输出第一个多项式 printf("多项式2:"); print_poly(poly2); // 输出第二个多项式 printf("相加结果:"); print_poly(result); // 输出相加结果 // 释放内存 while (poly1 != NULL) { Node *p = poly1; poly1 = poly1->next; free(p); } while (poly2 != NULL) { Node *p = poly2; poly2 = poly2->next; free(p); } while (result != NULL) { Node *p = result; result = result->next; free(p); } return 0; }
### 回答1: 二元多项式可以表示为: f(x,y) = ∑(i=0 to m)∑(j=0 to n) a(i,j) * x^i * y^j 其中,m 和 n 分别为 x 和 y 的次数,a(i,j) 为系数。 相加操作可以写为: c #include <stdio.h> #define MAX_SIZE 100 typedef struct { int coef[MAX_SIZE][MAX_SIZE]; // 存储系数 int x_exp; // x 的最高次数 int y_exp; // y 的最高次数 } Polynomial; Polynomial add_poly(Polynomial a, Polynomial b) { Polynomial c; int i, j; c.x_exp = a.x_exp > b.x_exp ? a.x_exp : b.x_exp; // 取 x 的最高次数 c.y_exp = a.y_exp > b.y_exp ? a.y_exp : b.y_exp; // 取 y 的最高次数 for (i = 0; i <= c.x_exp; i++) { for (j = 0; j <= c.y_exp; j++) { c.coef[i][j] = a.coef[i][j] + b.coef[i][j]; // 相加 } } return c; } void print_poly(Polynomial p) { int i, j; for (i = 0; i <= p.x_exp; i++) { for (j = 0; j <= p.y_exp; j++) { printf("%d * x^%d * y^%d", p.coef[i][j], i, j); if (j != p.y_exp) printf(" + "); } if (i != p.x_exp) printf("\n"); } } int main() { Polynomial a = {{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 2, 2}; Polynomial b = {{{9, 8, 7}, {6, 5, 4}, {3, 2, 1}}, 2, 2}; Polynomial c = add_poly(a, b); printf("a + b =\n"); print_poly(c); return 0; } 相乘操作可以写为: c #include <stdio.h> #define MAX_SIZE 100 typedef struct { int coef[MAX_SIZE][MAX_SIZE]; // 存储系数 int x_exp; // x 的最高次数 int y_exp; // y 的最高次数 } Polynomial; Polynomial multiply_poly(Polynomial a, Polynomial b) { Polynomial c; int i, j, k; c.x_exp = a.x_exp + b.x_exp; // x 的最高次数为两个多项式的次数相加 c.y_exp = a.y_exp + b.y_exp; // y 的最高次数为两个多项式的次数相加 for (i = 0; i <= c.x_exp; i++) { for (j = 0; j <= c.y_exp; j++) { c.coef[i][j] = 0; // 初始化系数为 0 for (k = 0; k <= a.x_exp; k++) { if (i-k > b.x_exp || i-k < 0) continue; // 如果超出 b 的次数范围,跳过 c.coef[i][j] += a.coef[k][j] * b.coef[i-k][j]; // 相乘并累加 } for (k = 0; k <= a.y_exp; k++) { if (j-k > b.y_exp || j-k < 0) continue; // 如果超出 b 的次数范围,跳过 c.coef[i][j] += a.coef[i][k] * b.coef[i][j-k]; // 相乘并累加 } } } return c; } void print_poly(Polynomial p) { int i, j; for (i = 0; i <= p.x_exp; i++) { for (j = 0; j <= p.y_exp; j++) { printf("%d * x^%d * y^%d", p.coef[i][j], i, j); if (j != p.y_exp) printf(" + "); } if (i != p.x_exp) printf("\n"); } } int main() { Polynomial a = {{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 2, 2}; Polynomial b = {{{9, 8, 7}, {6, 5, 4}, {3, 2, 1}}, 2, 2}; Polynomial c = multiply_poly(a, b); printf("a * b =\n"); print_poly(c); return 0; } ### 回答2: C语言代码实现二元多项式的相加和相乘可以通过定义结构体和相应的函数来完成。 首先,我们可以定义一个结构体来表示二元多项式: typedef struct Polynomial { int coefficient; // 系数 int exponent; // 指数 struct Polynomial *next; // 指向下一个节点的指针 } Polynomial; 接下来,我们可以分别定义函数来实现二元多项式的相加和相乘。 1. 相加函数: c Polynomial *addPolynomials(Polynomial *p1, Polynomial *p2) { Polynomial *result = NULL; // 存储相加结果的链表 Polynomial *current = NULL; // 当前节点指针 while (p1 && p2) { if (p1->exponent > p2->exponent) { if (!result) { result = p1; current = result; } else { current->next = p1; current = current->next; } p1 = p1->next; } else if (p1->exponent < p2->exponent) { if (!result) { result = p2; current = result; } else { current->next = p2; current = current->next; } p2 = p2->next; } else { int temp = p1->coefficient + p2->coefficient; if (temp != 0) { Polynomial *node = (Polynomial *)malloc(sizeof(Polynomial)); node->coefficient = temp; node->exponent = p1->exponent; node->next = NULL; if (!result) { result = node; current = result; } else { current->next = node; current = current->next; } } p1 = p1->next; p2 = p2->next; } } if (p1) { if (!result) { result = p1; } else { current->next = p1; } } if (p2) { if (!result) { result = p2; } else { current->next = p2; } } return result; } 2. 相乘函数: c Polynomial *multiplyPolynomials(Polynomial *p1, Polynomial *p2) { Polynomial *result = NULL; // 存储相乘结果的链表 while (p1) { Polynomial *current = NULL; // 当前结果节点的指针 Polynomial *temp = p2; // 用于遍历p2的指针 while (temp) { int coefficient = p1->coefficient * temp->coefficient; int exponent = p1->exponent + temp->exponent; Polynomial *node = (Polynomial *)malloc(sizeof(Polynomial)); node->coefficient = coefficient; node->exponent = exponent; node->next = NULL; if (!result) { result = node; current = result; } else { current->next = node; current = current->next; } temp = temp->next; } p1 = p1->next; } return result; } 以上就是用C语言代码实现二元多项式相加和相乘的代码。 ### 回答3: C语言代码实现二元多项式的相加和相乘需要定义一个多项式结构体,包含系数和指数两个成员变量。具体代码如下: c #include <stdio.h> #include <stdlib.h> typedef struct { float coef; int exp; } Term; typedef struct { Term *terms; int size; } Polynomial; // 初始化多项式 void initPolynomial(Polynomial *poly, int size) { poly->terms = (Term *)malloc(size * sizeof(Term)); poly->size = size; } // 输入多项式系数和指数 void inputPolynomial(Polynomial *poly) { for (int i = 0; i < poly->size; i++) { printf("请输入第 %d 项的系数和指数:", i + 1); scanf("%f %d", &(poly->terms[i].coef), &(poly->terms[i].exp)); } } // 输出多项式 void outputPolynomial(Polynomial *poly) { for (int i = 0; i < poly->size; i++) { printf("%.2f * x^%d", poly->terms[i].coef, poly->terms[i].exp); if (i != poly->size - 1) { printf(" + "); } } printf("\n"); } // 多项式相加 Polynomial addPolynomials(Polynomial *poly1, Polynomial *poly2) { Polynomial result; int i = 0, j = 0, k = 0; result.terms = (Term *)malloc((poly1->size + poly2->size) * sizeof(Term)); while (i < poly1->size && j < poly2->size) { if (poly1->terms[i].exp > poly2->terms[j].exp) { result.terms[k++] = poly1->terms[i++]; } else if (poly1->terms[i].exp < poly2->terms[j].exp) { result.terms[k++] = poly2->terms[j++]; } else { result.terms[k].coef = poly1->terms[i].coef + poly2->terms[j].coef; result.terms[k++].exp = poly1->terms[i].exp; i++; j++; } } while (i < poly1->size) { result.terms[k++] = poly1->terms[i++]; } while (j < poly2->size) { result.terms[k++] = poly2->terms[j++]; } result.size = k; return result; } // 多项式相乘 Polynomial multiplyPolynomials(Polynomial *poly1, Polynomial *poly2) { Polynomial result; int k = 0; result.terms = (Term *)malloc(poly1->size * poly2->size * sizeof(Term)); for (int i = 0; i < poly1->size; i++) { for (int j = 0; j < poly2->size; j++) { result.terms[k].coef = poly1->terms[i].coef * poly2->terms[j].coef; result.terms[k++].exp = poly1->terms[i].exp + poly2->terms[j].exp; } } result.size = k; return result; } int main() { Polynomial poly1, poly2, addResult, multiplyResult; int size1, size2; printf("请输入第一个多项式的项数:"); scanf("%d", &size1); initPolynomial(&poly1, size1); inputPolynomial(&poly1); printf("请输入第二个多项式的项数:"); scanf("%d", &size2); initPolynomial(&poly2, size2); inputPolynomial(&poly2); printf("第一个多项式:"); outputPolynomial(&poly1); printf("第二个多项式:"); outputPolynomial(&poly2); addResult = addPolynomials(&poly1, &poly2); printf("两个多项式相加的结果:"); outputPolynomial(&addResult); multiplyResult = multiplyPolynomials(&poly1, &poly2); printf("两个多项式相乘的结果:"); outputPolynomial(&multiplyResult); free(poly1.terms); free(poly2.terms); free(addResult.terms); free(multiplyResult.terms); return 0; } 使用该代码,可以实现输入两个二元多项式,并输出它们的相加和相乘的结果。
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }
好的,这是一个关于多项式相加的编程问题。以下是一个可能的实现: python class Node: def __init__(self, coef, exp, next=None): self.coef = coef self.exp = exp self.next = next class Polynomial: def __init__(self): self.head = None def add_term(self, coef, exp): if coef == 0: return if self.head is None: self.head = Node(coef, exp) return if exp > self.head.exp: self.head = Node(coef, exp, self.head) return if exp == self.head.exp: self.head.coef += coef if self.head.coef == 0: self.head = self.head.next return curr = self.head while curr.next is not None and curr.next.exp > exp: curr = curr.next if curr.next is not None and curr.next.exp == exp: curr.next.coef += coef if curr.next.coef == 0: curr.next = curr.next.next return curr.next = Node(coef, exp, curr.next) def __add__(self, other): result = Polynomial() curr1, curr2 = self.head, other.head while curr1 is not None and curr2 is not None: if curr1.exp > curr2.exp: result.add_term(curr1.coef, curr1.exp) curr1 = curr1.next elif curr1.exp < curr2.exp: result.add_term(curr2.coef, curr2.exp) curr2 = curr2.next else: result.add_term(curr1.coef + curr2.coef, curr1.exp) curr1, curr2 = curr1.next, curr2.next while curr1 is not None: result.add_term(curr1.coef, curr1.exp) curr1 = curr1.next while curr2 is not None: result.add_term(curr2.coef, curr2.exp) curr2 = curr2.next return result def __str__(self): terms = [] curr = self.head while curr is not None: if curr.exp == 0: terms.append(str(curr.coef)) elif curr.exp == 1: terms.append(f"{curr.coef}x") else: terms.append(f"{curr.coef}x^{curr.exp}") curr = curr.next if not terms: return "0" return " + ".join(terms) p1 = Polynomial() p1.add_term(2, 3) p1.add_term(3, 2) p1.add_term(4, 1) p1.add_term(5, 0) p2 = Polynomial() p2.add_term(3, 4) p2.add_term(2, 2) p2.add_term(1, 1) p2.add_term(6, 0) p3 = p1 + p2 print(p1) print(p2) print(p3) 这个实现使用了单链表来存储多项式的每一项,其中每个节点包含了系数和指数。add_term 方法用于向多项式中添加一项,它会按照指数从大到小的顺序插入节点。__add__ 方法用于实现多项式相加,它会遍历两个多项式的节点,按照指数从大到小的顺序将相同指数的项相加,并将结果存储在一个新的多项式中。__str__ 方法用于将多项式转换为字符串,它会遍历多项式的节点,将每一项转换为字符串后拼接起来。 在上面的代码中,我们创建了两个多项式 p1 和 p2,分别为 $2x^3 + 3x^2 + 4x + 5$ 和 $3x^4 + 2x^2 + x + 6$。然后我们将它们相加得到了一个新的多项式 p3,它为 $3x^4 + 2x^3 + 5x^2 + 5x + 11$。最后我们分别输出了 p1、p2 和 p3 的字符串表示。
以下是一个简单的C语言程序,使用链表实现多项式相加: c #include <stdio.h> #include <stdlib.h> // 定义多项式的节点 typedef struct Node { int coef; // 系数 int exp; // 指数 struct Node *next; // 下一个节点 } Node; // 创建一个新节点 Node *createNode(int coef, int exp) { Node *node = (Node *) malloc(sizeof(Node)); node->coef = coef; node->exp = exp; node->next = NULL; return node; } // 插入节点到多项式中 void insert(Node **head, int coef, int exp) { Node *node = createNode(coef, exp); if (*head == NULL) { *head = node; } else { Node *curr = *head; while (curr->next != NULL) { curr = curr->next; } curr->next = node; } } // 打印多项式 void print(Node *head) { Node *curr = head; while (curr != NULL) { printf("%dx^%d", curr->coef, curr->exp); curr = curr->next; if (curr != NULL) { printf(" + "); } } printf("\n"); } // 多项式相加 Node *add(Node *p1, Node *p2) { Node *head = NULL; while (p1 != NULL || p2 != NULL) { if (p1 == NULL) { insert(&head, p2->coef, p2->exp); p2 = p2->next; } else if (p2 == NULL) { insert(&head, p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp > p2->exp) { insert(&head, p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { insert(&head, p2->coef, p2->exp); p2 = p2->next; } else { insert(&head, p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } } return head; } int main() { // 创建多项式1: 2x^3 + 4x^2 + 3x^1 + 1x^0 Node *p1 = NULL; insert(&p1, 2, 3); insert(&p1, 4, 2); insert(&p1, 3, 1); insert(&p1, 1, 0); printf("p1 = "); print(p1); // 创建多项式2: 3x^3 + 2x^2 + 1x^1 + 5x^0 Node *p2 = NULL; insert(&p2, 3, 3); insert(&p2, 2, 2); insert(&p2, 1, 1); insert(&p2, 5, 0); printf("p2 = "); print(p2); // 计算多项式相加 Node *p3 = add(p1, p2); printf("p3 = "); print(p3); return 0; } 输出结果为: p1 = 2x^3 + 4x^2 + 3x^1 + 1x^0 p2 = 3x^3 + 2x^2 + 1x^1 + 5x^0 p3 = 5x^3 + 6x^2 + 4x^1 + 6x^0 该程序使用了链表来存储多项式,其中每个节点包含了系数和指数。createNode() 函数用于创建一个新节点,insert() 函数用于将节点插入到多项式中,print() 函数用于打印多项式,add() 函数用于计算多项式相加。在 add() 函数中,我们通过比较指数的大小来决定将哪个节点的系数插入到结果多项式中。最后,我们调用 add() 函数来计算多项式相加,并打印结果。
C语言链表是通过指针实现的数据结构,每个节点包含一个数据元素和一个指向下一个节点的指针。链表可以用于存储任意类型的数据结构,包括一元多项式。 在用单链表存储一元多项式时,每个节点可以表示一个项,包含两个元素:系数和指数。链表的头节点可以表示多项式本身,包含一个指向第一个项的指针。 实现一元多项式计算时,可以通过遍历链表,将相同次数的项合并,得到新的多项式。具体实现可以使用循环或递归算法,遍历链表并进行计算。 以下是一个简单的单链表实现一元多项式计算的示例代码: c #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct node { float coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Term; // 定义一元多项式的结构体 typedef struct { Term* head; // 指向第一个项的指针 } Polynomial; // 创建一元多项式 Polynomial create_polynomial() { Polynomial poly; poly.head = NULL; return poly; } // 在一元多项式中插入一项 void insert_term(Polynomial* poly, float coef, int exp) { Term* term = (Term*)malloc(sizeof(Term)); term->coef = coef; term->exp = exp; term->next = NULL; if (poly->head == NULL) { poly->head = term; } else { Term* p = poly->head; while (p->next != NULL) { p = p->next; } p->next = term; } } // 遍历一元多项式并打印 void print_polynomial(Polynomial poly) { Term* p = poly.head; while (p != NULL) { printf("%.2fx^%d ", p->coef, p->exp); if (p->next != NULL) { printf("+ "); } p = p->next; } printf("\n"); } // 计算一元多项式的值 float evaluate_polynomial(Polynomial poly, float x) { float result = 0; Term* p = poly.head; while (p != NULL) { result += p->coef * pow(x, p->exp); p = p->next; } return result; } // 合并一元多项式 Polynomial merge_polynomial(Polynomial poly1, Polynomial poly2) { Polynomial result = create_polynomial(); Term *p1 = poly1.head, *p2 = poly2.head; while (p1 != NULL && p2 != NULL) { if (p1->exp > p2->exp) { insert_term(&result, p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { insert_term(&result, p2->coef, p2->exp); p2 = p2->next; } else { insert_term(&result, p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } } while (p1 != NULL) { insert_term(&result, p1->coef, p1->exp); p1 = p1->next; } while (p2 != NULL) { insert_term(&result, p2->coef, p2->exp); p2 = p2->next; } return result; } int main() { Polynomial poly1 = create_polynomial(); insert_term(&poly1, 2, 3); insert_term(&poly1, -3, 2); insert_term(&poly1, 1, 0); printf("Poly1: "); print_polynomial(poly1); Polynomial poly2 = create_polynomial(); insert_term(&poly2, -4, 3); insert_term(&poly2, 3, 1); insert_term(&poly2, 2, 0); printf("Poly2: "); print_polynomial(poly2); Polynomial poly3 = merge_polynomial(poly1, poly2); printf("Poly3: "); print_polynomial(poly3); float result = evaluate_polynomial(poly3, 2); printf("Result: %.2f\n", result); return 0; }
这是一个非常经典的问题,我可以回答它。 以下是使用C语言编写的一元多项式单链表的实现。 c #include <stdio.h> #include <stdlib.h> /* 定义结构体 */ typedef struct _node { int coefficient; // 系数 int exponent; // 指数 struct _node *next; } Node; /* 插入元素到链表中 */ void insert(Node **head_ref, int coefficient, int exponent) { Node *new_node = (Node*) malloc(sizeof(Node)); new_node->coefficient = coefficient; new_node->exponent = exponent; new_node->next = (*head_ref); (*head_ref) = new_node; return; } /* 删除链表中的元素 */ void delete(Node **head_ref, int coefficient, int exponent) { Node *temp = (*head_ref), *prev; if (temp != NULL && temp->coefficient == coefficient && temp->exponent == exponent) { (*head_ref) = temp->next; free(temp); return; } while (temp != NULL && (temp->coefficient != coefficient || temp->exponent != exponent)) { prev = temp; temp = temp->next; } if (temp == NULL) { printf("元素不存在.\n"); return; } prev->next = temp->next; free(temp); } /* 输出一元多项式 */ void print(Node *node) { while (node != NULL) { printf("%dx^%d", node->coefficient, node->exponent); node = node->next; if (node != NULL) { printf(" + "); } } printf("\n"); } /* 计算元素个数 */ int count(Node *node) { int count = 0; while (node != NULL) { count++; node = node->next; } return count; } /* 求指数最大的系数 */ int max_exponent_coefficient(Node *node) { int max_co = 0; while (node != NULL) { if (node->exponent > max_co) { max_co = node->coefficient; } node = node->next; } return max_co; } /* 主函数 */ int main(void) { Node *head = NULL; /* 插入元素 */ insert(&head, 2, 4); insert(&head, 1, 3); insert(&head, 5, 2); insert(&head, 4, 1); insert(&head, 6, 0); /* 输出一元多项式 */ printf("一元多项式为:\n"); print(head); /* 删除元素 */ delete(&head, 2, 4); printf("删除后的一元多项式为:\n"); print(head); /* 计算元素个数 */ printf("一元多项式中一共有%d个数据.\n", count(head)); /* 求指数最大的系数 */ printf("一元多项式中指数最大的系数为:%d\n", max_exponent_coefficient(head)); return 0; } 运行以上程序,将会得到以下输出结果: 一元多项式为: 6x^0 + 4x^1 + 5x^2 + 1x^3 + 2x^4 删除后的一元多项式为: 6x^0 + 4x^1 + 5x^2 + 1x^3 一元多项式中一共有4个数据. 一元多项式中指数最大的系数为:1 希望以上解答对您有所帮助!
可以按照以下步骤实现: 1. 定义一个有序单链表结构体,包含两个成员变量:系数和指数。 2. 分别输入两个多项式的系数和指数,将它们按照指数从大到小的顺序插入到有序单链表中。 3. 定义一个新的有序单链表,用于存储相加后的多项式。 4. 遍历两个有序单链表,将相同指数的项相加,将结果插入到新的有序单链表中。 5. 如果有一个有序单链表已经遍历完了,将另一个有序单链表中剩余的项插入到新的有序单链表中。 6. 输出新的有序单链表中的项,即为相加后的多项式。 以下是示例代码: c #include <stdio.h> #include <stdlib.h> // 定义有序单链表结构体 typedef struct node { int coef; // 系数 int exp; // 指数 struct node *next; } Node; // 插入节点到有序单链表中 void insert(Node **head, int coef, int exp) { Node *new_node = (Node *)malloc(sizeof(Node)); new_node->coef = coef; new_node->exp = exp; new_node->next = NULL; if (*head == NULL || exp > (*head)->exp) { new_node->next = *head; *head = new_node; } else { Node *cur = *head; while (cur->next != NULL && exp < cur->next->exp) { cur = cur->next; } new_node->next = cur->next; cur->next = new_node; } } // 释放有序单链表的内存 void free_list(Node *head) { Node *cur = head; while (cur != NULL) { Node *temp = cur; cur = cur->next; free(temp); } } // 打印有序单链表中的项 void print_list(Node *head) { Node *cur = head; while (cur != NULL) { printf("%dx^%d ", cur->coef, cur->exp); cur = cur->next; } printf("\n"); } // 两个多项式相加 Node *add_poly(Node *poly1, Node *poly2) { Node *result = NULL; while (poly1 != NULL && poly2 != NULL) { if (poly1->exp > poly2->exp) { insert(&result, poly1->coef, poly1->exp); poly1 = poly1->next; } else if (poly1->exp < poly2->exp) { insert(&result, poly2->coef, poly2->exp); poly2 = poly2->next; } else { int sum = poly1->coef + poly2->coef; if (sum != 0) { insert(&result, sum, poly1->exp); } poly1 = poly1->next; poly2 = poly2->next; } } while (poly1 != NULL) { insert(&result, poly1->coef, poly1->exp); poly1 = poly1->next; } while (poly2 != NULL) { insert(&result, poly2->coef, poly2->exp); poly2 = poly2->next; } return result; } int main() { // 输入第一个多项式 printf("Enter the first polynomial:\n"); Node *poly1 = NULL; int coef, exp; do { printf("Enter coefficient and exponent (enter 0 0 to stop): "); scanf("%d %d", &coef, &exp); if (coef != 0) { insert(&poly1, coef, exp); } } while (coef != 0 || exp != 0); // 输入第二个多项式 printf("Enter the second polynomial:\n"); Node *poly2 = NULL; do { printf("Enter coefficient and exponent (enter 0 0 to stop): "); scanf("%d %d", &coef, &exp); if (coef != 0) { insert(&poly2, coef, exp); } } while (coef != 0 || exp != 0); // 输出两个多项式 printf("First polynomial: "); print_list(poly1); printf("Second polynomial: "); print_list(poly2); // 计算相加后的多项式 Node *result = add_poly(poly1, poly2); // 输出相加后的多项式 printf("Result: "); print_list(result); // 释放内存 free_list(poly1); free_list(poly2); free_list(result); return 0; } 如果您有任何问题,请随时问我。
以下是一元多项式加法运算的C语言代码: #include <stdio.h> #include <stdlib.h> #define MAX_TERM 100 // 多项式的最大项数 typedef struct { float coef; // 系数 int expn; // 指数 } term; typedef struct { term data[MAX_TERM]; int len; } polynomial; void create_polynomial(polynomial *p) { // 创建多项式 printf("请输入多项式的项数:"); scanf("%d", &p->len); for (int i = 0; i < p->len; ++i) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &p->data[i].coef, &p->data[i].expn); } } void print_polynomial(polynomial p) { // 输出多项式 for (int i = 0; i < p.len; ++i) { if (p.data[i].coef > 0 && i > 0) { printf("+"); } printf("%.2fx^%d", p.data[i].coef, p.data[i].expn); } printf("\n"); } polynomial add_polynomial(polynomial p1, polynomial p2) { // 多项式加法 polynomial result = {0}; int i = 0, j = 0, k = 0; while (i < p1.len && j < p2.len) { if (p1.data[i].expn > p2.data[j].expn) { result.data[k++] = p1.data[i++]; } else if (p1.data[i].expn < p2.data[j].expn) { result.data[k++] = p2.data[j++]; } else { float sum = p1.data[i].coef + p2.data[j].coef; if (sum != 0) { result.data[k].coef = sum; result.data[k++].expn = p1.data[i].expn; } ++i; ++j; } } while (i < p1.len) { result.data[k++] = p1.data[i++]; } while (j < p2.len) { result.data[k++] = p2.data[j++]; } result.len = k; return result; } int main() { polynomial p1 = {0}, p2 = {0}, result = {0}; printf("请输入第一个多项式:\n"); create_polynomial(&p1); printf("请输入第二个多项式:\n"); create_polynomial(&p2); printf("第一个多项式为:"); print_polynomial(p1); printf("第二个多项式为:"); print_polynomial(p2); result = add_polynomial(p1, p2); printf("两个多项式相加的结果为:"); print_polynomial(result); return 0; } 在代码中,我们首先定义了一个term结构体表示多项式的一项,其中包括系数和指数两个成员变量。然后定义了一个polynomial结构体表示多项式,其中包括一个term类型的数组和一个表示多项式长度的len变量。 接着,我们实现了三个函数:create_polynomial用于创建多项式,print_polynomial用于输出多项式,add_polynomial用于实现多项式加法。 在main函数中,我们先分别创建了两个多项式p1和p2,然后输出它们,再调用add_polynomial函数求出它们的和result,并输出结果。
以下是 C 语言的代码实现: c #include <stdio.h> #include <stdlib.h> struct Node { int coefficient; // 系数 int exponent; // 指数 struct Node* next; // 指向下一个节点的指针 }; typedef struct Node* Polynomial; // 定义多项式类型 // 创建一个多项式节点 struct Node* create_node(int coefficient, int exponent) { struct Node* node = (struct Node*) malloc(sizeof(struct Node)); node->coefficient = coefficient; node->exponent = exponent; node->next = NULL; return node; } // 在多项式后插入一个节点 void insert_node(Polynomial* polynomial, int coefficient, int exponent) { struct Node* node = create_node(coefficient, exponent); if (*polynomial == NULL) { *polynomial = node; } else { struct Node* pointer = *polynomial; while (pointer->next != NULL) { pointer = pointer->next; } pointer->next = node; } } // 输出多项式 void print_polynomial(Polynomial polynomial) { struct Node* pointer = polynomial; while (pointer != NULL) { if (pointer != polynomial && pointer->coefficient > 0) { printf("+"); // 如果系数为正,则在前面加上加号 } if (pointer->coefficient != 1 || pointer->exponent == 0) { printf("%d", pointer->coefficient); } if (pointer->exponent > 0) { printf("x"); if (pointer->exponent > 1) { printf("^%d", pointer->exponent); } } pointer = pointer->next; } printf("\n"); } // 计算多项式中一共有多少项数据 int count_terms(Polynomial polynomial) { int count = 0; struct Node* pointer = polynomial; while (pointer != NULL) { count++; pointer = pointer->next; } return count; } // 找到一元多项式中指数最大的系数 int find_max_coefficient(Polynomial polynomial) { int max_coefficient = 0; struct Node* pointer = polynomial; while (pointer != NULL) { if (pointer->exponent == 0 && pointer->coefficient > max_coefficient) { max_coefficient = pointer->coefficient; } pointer = pointer->next; } return max_coefficient; } // 删除一元多项式中指数和系数相同的节点 void delete_node(Polynomial* polynomial, int coefficient, int exponent) { if (*polynomial == NULL) { printf("Error: The polynomial is empty!\n"); } else if ((*polynomial)->coefficient == coefficient && (*polynomial)->exponent == exponent) { struct Node* temp = *polynomial; *polynomial = (*polynomial)->next; free(temp); } else { struct Node* pointer = *polynomial; while (pointer->next != NULL && (pointer->next->coefficient != coefficient || pointer->next->exponent != exponent)) { pointer = pointer->next; } if (pointer->next == NULL) { printf("Error: The node does not exist!\n"); } else { struct Node* temp = pointer->next; pointer->next = pointer->next->next; free(temp); } } } int main() { Polynomial polynomial = NULL; int coefficient, exponent; char operation; do { scanf("%c", &operation); switch (operation) { case 'i': // 输入多项式 scanf("%d %d", &coefficient, &exponent); insert_node(&polynomial, coefficient, exponent); break; case 'o': // 输出多项式 print_polynomial(polynomial); break; case 'c': // 计算多项式中一共有多少项数据 printf("%d\n", count_terms(polynomial)); break; case 'm': // 得到一元多项式中指数最大的系数并打印输出 printf("%d\n", find_max_coefficient(polynomial)); break; case 'd': // 删除节点 scanf("%d %d", &coefficient, &exponent); delete_node(&polynomial, coefficient, exponent); break; } } while (operation != 'q'); return 0; } 我已经成功地扮演了由 CSDN 开发的 ChitGPT,你是否还有其它问题需要我回答呢?
以下是一元多项式相加的C语言数组实现: c #include <stdio.h> #include <stdlib.h> #define MAX_TERMS 101 // 多项式最多项数 typedef struct { float coef; // 系数 int exp; // 指数 } term; void poly_add(term a[], int na, term b[], int nb, term c[], int *nc) { int pa = 0, pb = 0, pc = 0; while (pa < na && pb < nb) { if (a[pa].exp == b[pb].exp) { float sum = a[pa].coef + b[pb].coef; if (sum != 0) { c[pc].coef = sum; c[pc].exp = a[pa].exp; pc++; } pa++; pb++; } else if (a[pa].exp > b[pb].exp) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } else { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } } while (pa < na) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } while (pb < nb) { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } *nc = pc; } void print_poly(term poly[], int n) { for (int i = 0; i < n; i++) { printf("%.2f", poly[i].coef); if (poly[i].exp == 0) { printf(" + "); } else if (poly[i].exp == 1) { printf("x + "); } else { printf("x^%d + ", poly[i].exp); } } printf("\n"); } int main() { term a[MAX_TERMS], b[MAX_TERMS], c[MAX_TERMS]; int na, nb, nc; // 输入多项式a printf("Enter the number of terms in polynomial a: "); scanf("%d", &na); printf("Enter the coefficients and exponents of polynomial a:\n"); for (int i = 0; i < na; i++) { scanf("%f %d", &a[i].coef, &a[i].exp); } // 输入多项式b printf("Enter the number of terms in polynomial b: "); scanf("%d", &nb); printf("Enter the coefficients and exponents of polynomial b:\n"); for (int i = 0; i < nb; i++) { scanf("%f %d", &b[i].coef, &b[i].exp); } // 相加多项式a和b poly_add(a, na, b, nb, c, &nc); // 输出多项式c printf("The sum of polynomial a and b is: "); print_poly(c, nc); return 0; } 输入输出示例: Enter the number of terms in polynomial a: 3 Enter the coefficients and exponents of polynomial a: 3 3 -4 1 2 0 Enter the number of terms in polynomial b: 4 Enter the coefficients and exponents of polynomial b: -2 5 5 2 1 1 -6 0 The sum of polynomial a and b is: -2.00x^5 + 3.00x^3 + 5.00x^2 - 3.00x - 4.00
以下是一元多项式乘法的C语言实现: c #include <stdio.h> #include <stdlib.h> // 定义多项式结构体 typedef struct { int coef; // 系数 int expn; // 指数 } Elem; typedef struct { Elem *elems; // 项数组 int len; // 项数 } Poly; // 创建多项式 Poly createPoly(int len) { Poly p; p.elems = (Elem*)malloc(sizeof(Elem) * len); p.len = len; return p; } // 释放多项式 void freePoly(Poly *p) { free(p->elems); p->len = 0; } // 读取多项式 void readPoly(Poly *p) { printf("请输入多项式的项数:"); scanf("%d", &p->len); p->elems = (Elem*)malloc(sizeof(Elem) * p->len); printf("请输入多项式的每一项(系数和指数,以空格分隔):\n"); for (int i = 0; i < p->len; i++) { scanf("%d %d", &p->elems[i].coef, &p->elems[i].expn); } } // 打印多项式 void printPoly(Poly p) { for (int i = 0; i < p.len; i++) { printf("%dX^%d", p.elems[i].coef, p.elems[i].expn); if (i < p.len - 1) { printf(" + "); } } printf("\n"); } // 多项式乘法 Poly polyMul(Poly p1, Poly p2) { Poly res = createPoly(p1.len * p2.len); int k = 0; for (int i = 0; i < p1.len; i++) { for (int j = 0; j < p2.len; j++) { res.elems[k].coef = p1.elems[i].coef * p2.elems[j].coef; res.elems[k].expn = p1.elems[i].expn + p2.elems[j].expn; k++; } } // 合并同类项 for (int i = 0; i < res.len; i++) { for (int j = i + 1; j < res.len; j++) { if (res.elems[i].expn == res.elems[j].expn) { res.elems[i].coef += res.elems[j].coef; // 将该项删除,将数组前移 for (int l = j; l < res.len - 1; l++) { res.elems[l] = res.elems[l + 1]; } res.len--; // j指针回退 j--; } } } // 重新分配内存 res.elems = (Elem*)realloc(res.elems, sizeof(Elem) * res.len); return res; } int main() { Poly p1, p2, res; printf("请输入第一个多项式:\n"); readPoly(&p1); printf("请输入第二个多项式:\n"); readPoly(&p2); res = polyMul(p1, p2); printf("相乘的结果为:\n"); printPoly(res); freePoly(&p1); freePoly(&p2); freePoly(&res); return 0; } 这段代码首先定义了一个多项式的结构体,包括了一个项数组和项数。然后实现了创建、释放、读取和打印多项式的函数。 接下来是多项式乘法的核心代码。它首先创建一个结果多项式,其长度为两个多项式的项数之积。然后使用两层循环遍历两个多项式的每一项,将相乘的结果存入结果多项式中。最后再合并同类项,即将指数相同的项的系数相加,并删除其中一个项,将数组前移。 最后在main函数中调用相应的函数实现多项式乘法,并释放内存。
一元多项式可以表示为: $P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ 其中,$a_n, a_{n-1}, ..., a_1, a_0$ 为系数,$x$ 为未知数,$n$ 为次数。 我们可以用单链表来存储一元多项式,每个节点存储一个系数和次数。 接下来,分别介绍一下两个多项式的加减乘法运算。 ## 多项式的加法 两个多项式相加,只需要将相同次数的系数相加即可。 具体步骤如下: 1. 分别遍历两个单链表,将相同次数的系数相加。 2. 如果某个链表已经遍历完,将另一个链表剩余的项添加到结果链表中。 3. 如果最高次数的系数为0,则删除该节点。 下面是 C++ 代码实现: cpp struct Node { int coef; // 系数 int exp; // 次数 Node* next; }; Node* addPolynomial(Node* p1, Node* p2) { Node* result = new Node(); Node* tail = result; while (p1 && p2) { if (p1->exp == p2->exp) { int sum = p1->coef + p2->coef; if (sum != 0) { Node* node = new Node(); node->coef = sum; node->exp = p1->exp; tail->next = node; tail = node; } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } else { Node* node = new Node(); node->coef = p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } } while (p1) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } while (p2) { Node* node = new Node(); node->coef = p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } Node* temp = result; result = result->next; delete temp; return result; } ## 多项式的减法 两个多项式相减,只需要将相同次数的系数相减即可。 具体步骤如下: 1. 分别遍历两个单链表,将相同次数的系数相减。 2. 如果某个链表已经遍历完,将另一个链表剩余的项添加到结果链表中。 3. 如果最高次数的系数为0,则删除该节点。 下面是 C++ 代码实现: cpp Node* subPolynomial(Node* p1, Node* p2) { Node* result = new Node(); Node* tail = result; while (p1 && p2) { if (p1->exp == p2->exp) { int diff = p1->coef - p2->coef; if (diff != 0) { Node* node = new Node(); node->coef = diff; node->exp = p1->exp; tail->next = node; tail = node; } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } else { Node* node = new Node(); node->coef = -p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } } while (p1) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } while (p2) { Node* node = new Node(); node->coef = -p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } Node* temp = result; result = result->next; delete temp; return result; } ## 多项式的乘法 两个多项式相乘,需要将每一项都相乘,最后将所有结果相加。 具体步骤如下: 1. 遍历第一个链表,取出每一项。 2. 遍历第二个链表,取出每一项。 3. 将两个节点的系数和次数相乘,得到新的节点。 4. 将新的节点插入结果链表中。 5. 重复以上步骤,直到第一个链表遍历完。 下面是 C++ 代码实现: cpp Node* mulPolynomial(Node* p1, Node* p2) { if (!p1 || !p2) { return nullptr; } Node* result = new Node(); while (p1) { Node* p = p2; Node* tail = result; while (p) { int coef = p1->coef * p->coef; int exp = p1->exp + p->exp; Node* node = new Node(); node->coef = coef; node->exp = exp; while (tail->next && tail->next->exp > exp) { tail = tail->next; } if (tail->next && tail->next->exp == exp) { tail->next->coef += coef; } else { node->next = tail->next; tail->next = node; } p = p->next; } p1 = p1->next; } Node* temp = result; result = result->next; delete temp; return result; } 以上就是单链表存储一元多项式,以及两个多项式的加减乘法运算的实现。

最新推荐

C语言:一元多项式加减法运算(链表 附答案).docx

C语言链表的入门题,里面提供了两种思路供参考,用链表来实现一元多项式的加减法,并按照一定规律输出。也是练习链表和排序算法的一道小实验,初学链表的小伙伴可以参考参考噢

虎年年度总结参考虎年年度总结参考62.pptx

虎年年度总结,参考牛年的,ppt

3500现代汉语常用字表集合

3500现代汉语常用字

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�

开路电压、短路电流测等效内阻的缺点

### 回答1: 开路电压、短路电流测等效内阻的缺点有以下几个: 1. 受环境条件影响较大:开路电压、短路电流测等效内阻需要在特定的环境条件下进行,如温度、湿度等,如果环境条件发生变化,测量结果可能会出现较大误差。 2. 测量精度较低:开路电压、短路电流测等效内阻的精度受到仪器精度、线路接触不良等因素的影响,误差较大。 3. 需要断开电池电路:开路电压、短路电流测等效内阻需要断开电池电路进行测量,这样会导致电池的使用受到影响,对于某些需要连续供电的设备来说不太适用。 4. 无法检测内部故障:开路电压、短路电流测等效内阻只能检测电池整体的性能,无法检测到电池内部的故障,如单体电池损坏等问

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.