plt.scatter(x_train[:, 0], x_train[:, 1], c=labels) 是什么意思
时间: 2024-01-15 11:04:40 浏览: 165
这段代码使用了 Matplotlib 的 scatter 函数来创建散点图。散点图是一种用来展示两个变量之间关系的图表类型。
`x_train[:, 0]` 和 `x_train[:, 1]` 是训练数据集中的两个特征(或者说是两个维度)的值。`x_train[:, 0]` 表示取训练数据集中的所有样本的第一个特征值,`x_train[:, 1]` 表示取训练数据集中的所有样本的第二个特征值。
`c=labels` 表示使用 `labels` 变量的值来为散点图中的每个点指定颜色。这里假设 `labels` 是一个与训练数据集中样本对应的标签数组,用不同的颜色来表示不同类别的样本。
因此,这段代码将根据训练数据集中的两个特征值和标签信息,创建一个散点图,横轴表示第一个特征,纵轴表示第二个特征,不同类别的样本用不同颜色表示。
相关问题
from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels #PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.fit_transform(X_test) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒")优化这段代码,输出其中pca降维的因子负荷量
可以优化代码如下:
```
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
import datetime
# 导入数据集
start = datetime.datetime.now() #计算程序运行时间
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
X_train = mnist.train.images
y_train = mnist.train.labels
X_test = mnist.test.images
y_test = mnist.test.labels
# PCA降维
pca = PCA(n_components=10)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
# 输出因子负荷量
print("PCA降维后的因子负荷量为:")
print(pca.components_)
# 可视化
plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1))
plt.show()
# K-means聚类
kmeans_centers = []
# 用于存储初始类中心
for i in range(10):
idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表
sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心
kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中
kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1)
kmeans.fit(X_train_pca)
# 计算分类错误率
y_pred = kmeans.predict(X_test_pca)
acc = accuracy_score(np.argmax(y_test, axis=1), y_pred)
print("分类错误率:{:.2%}".format(1-acc))
# 计算程序运行时间
end = datetime.datetime.now()
print("程序运行时间为:"+str((end-start).seconds)+"秒")
```
输出结果中包含了PCA降维后的因子负荷量,即`pca.components_`。
import scipy.io as sio from sklearn import svm import numpy as np import matplotlib.pyplot as plt data=sio.loadmat('AllData') labels=sio.loadmat('label') print(data) class1 = 0 class2 = 1 idx1 = np.where(labels['label']==class1)[0] idx2 = np.where(labels['label']==class2)[0] X1 = data['B007FFT0'] X2 = data['B014FFT0'] Y1 = labels['label'][idx1].reshape(-1, 1) Y2 = labels['label'][idx2].reshape(-1, 1) ## 随机选取训练数据和测试数据 np.random.shuffle(X1) np.random.shuffle(X2) # Xtrain = np.vstack((X1[:200,:], X2[:200,:])) # Xtest = np.vstack((X1[200:300,:], X2[200:300,:])) # Ytrain = np.vstack((Y1[:200,:], Y2[:200,:])) # Ytest = np.vstack((Y1[200:300,:], Y2[200:300,:])) # class1=data['B007FFT0'][0:1000, :] # class2=data['B014FFT0'][0:1000, :] train_data=np.vstack((X1[0:200, :],X2[0:200, :])) test_data=np.vstack((X1[200:300, :],X2[200:300, :])) train_labels=np.vstack((Y1[:200,:], Y2[:200,:])) test_labels=np.vstack((Y1[200:300,:], Y2[200:300,:])) ## 训练SVM模型 clf=svm.SVC(kernel='linear', C=1000) clf.fit(train_data,train_labels.reshape(-1)) ## 用测试数据测试模型准确率 train_accuracy = clf.score(train_data, train_labels) test_accuracy = clf.score(test_data, test_labels) # test_pred=clf.predict(test_data) # accuracy=np.mean(test_pred==test_labels) # print("分类准确率为:{:.2F}%".fromat(accuracy*100)) x_min,x_max=test_data[:,0].min()-1,test_data[:,0].max()+1 y_min,y_max=test_data[:,1].min()-1,test_data[:,1].max()+1 xx,yy=np.meshgrid(np.arange(x_min,x_max,0.02),np.arange(y_min,y_max,0.02)) # 生成一个由xx和yy组成的网格 # X, Y = np.meshgrid(xx, yy) # 将网格展平成一个二维数组xy xy = np.vstack([xx.ravel(), yy.ravel()]).T # Z = clf.decision_function(xy).reshape(xx.shape) # z=clf.predict(np.c_[xx.ravel(),yy.ravel()]) z=xy.reshape(xx.shape) plt.pcolormesh(xx.shape) plt.xlim(xx.min(),xx.max()) plt.ylim(yy.min(),yy.max()) plt.xtickes(()) plt.ytickes(()) # # 画出分界线 # axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) # axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.scatter(test_data[:,0],test_data[:1],c=test_labels,cmap=plt.cm.Paired) plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80,facecolors='none',linewidths=1.5,edgecolors='k') plt.show()处理一下代码出错问题
代码中出现了几个错误:
1. 在最后几行代码中,plt.pcolormesh(xx.shape)应该改为plt.pcolormesh(xx, yy, z),因为需要绘制的是网格xy上对应的值z。
2. 在plt.xtickes(())和plt.ytickes(())中,xtickes和ytickes应该改为xticks和yticks,因为正确的函数名是xticks和yticks。
3. 在plt.scatter(test_data[:,0],test_data[:1],c=test_labels,cmap=plt.cm.Paired)中,test_data[:,0]和test_data[:1]应该改为test_data[:,0]和test_data[:,1],因为需要绘制的是测试数据的两个特征值。
4. 在画出分界线的代码中,应该将注释的代码取消注释,即将axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])的注释去掉。
阅读全文