counter <= counter + 1'b1和counter++的区别

时间: 2024-02-26 21:53:46 浏览: 24
`counter <= counter + 1'b1` 是一个Verilog HDL的组合逻辑赋值语句,表示将一个名为counter的寄存器的值加1,并将结果赋值给counter。该语句的执行是并行的,即当时钟信号到达时,counter的值会立即更新为原值加1。它主要用于硬件描述语言中,表示组合逻辑电路的行为。 而 `counter++` 是一个C语言中的自增运算符,表示将一个名为counter的变量的值加1,但并不会改变counter的值。该表达式只会返回一个新的值,即counter加1后的结果。它主要用于编程语言中,表示对变量进行自增操作。 两者主要的区别在于使用场景和应用范围。`counter <= counter + 1'b1` 适用于硬件描述语言中,而 `counter++` 适用于编程语言中。同时,`counter <= counter + 1'b1` 是一个并行执行的组合逻辑赋值语句,而 `counter++` 是一个顺序执行的自增运算符。
相关问题

module beep( input wire clk, input wire Buzzer, output reg alarm ); reg [23:0] counter; reg [1:0] tone; always @(posedge clk) begin if (Buzzer) begin if (counter == 0) begin case (tone) 2'b00: alarm <= 1'b0; 2'b01: alarm <= ~alarm; 2'b10: alarm <= 1'b1; 2'b11: alarm <= 1'b0; endcase end counter <= counter + 1; if (counter == 1000000) begin counter <= 0; tone <= tone + 1; end else begin // 当使能信号为低电平时,将蜂鸣器输出置为0 alarm <= 1'b0; counter <= 0; tone <= 2'b00; end end end endmodule 改成低电平触发

你想将蜂鸣器的触发方式改为低电平触发。以下是修改后的代码: ```verilog module beep( input wire clk, input wire Buzzer, output reg alarm ); reg [23:0] counter; reg [1:0] tone; always @(posedge clk or negedge Buzzer) begin if (!Buzzer) begin if (counter == 0) begin case (tone) 2'b00: alarm <= 1'b0; 2'b01: alarm <= ~alarm; 2'b10: alarm <= 1'b1; 2'b11: alarm <= 1'b0; endcase end counter <= counter + 1; if (counter == 1000000) begin counter <= 0; tone <= tone + 1; end else begin // 当使能信号为高电平时,将蜂鸣器输出置为0 alarm <= 1'b0; counter <= 0; tone <= 2'b00; end end endmodule ``` 在这个修改后的代码中,我在 `always` 块中添加了 `negedge Buzzer` 条件,以在Buzzer信号的下降沿触发时执行相应的操作。当Buzzer信号为低电平时,蜂鸣器会按照之前的逻辑工作;当Buzzer信号为高电平时,蜂鸣器输出将被强制置为低电平。 请注意,具体的实现可能会因FPGA型号和使用的开发工具而有所不同。你可以根据自己的需求进行适当的修改和扩展。

请将以下vhdl代码改写为Verilog代码LIBRARY IEEE;--引用IEEE库 USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY COUNTER_100 IS PORT( CLK: IN STD_LOGIC; S: IN STD_LOGIC_VECTOR(2 DOWNTO 0); ST: IN STD_LOGIC; CLR: IN STD_LOGIC; R5,R4,R3,R2,R1,R0:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END ENTITY COUNTER_100; ARCHITECTURE RTL OF COUNTER_100 IS SIGNAL TEMP5:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL TEMP4:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL TEMP3:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL TEMP2:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL TEMP1:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL TEMP0:STD_LOGIC_VECTOR(3 DOWNTO 0):="0000"; SIGNAL CLK_100:STD_LOGIC; SIGNAL CLK_M:STD_LOGIC; SIGNAL CLK_F:STD_LOGIC; SIGNAL CLRSTATE:STD_LOGIC; BEGIN U1:BLOCK BEGIN PROCESS(S,ST,CLR) BEGIN IF(S="101")THEN IF(ST='1')THEN CLK_100<=CLK;CLRSTATE<='0'; ELSE CLK_100<='0'; IF(CLR='1')THEN CLRSTATE<='1'; ELSE CLRSTATE<='0'; END IF; END IF; ELSE CLRSTATE<='0'; END IF; END PROCESS; END BLOCK U1; U2:BLOCK BEGIN PROCESS(CLK_100) BEGIN IF(CLRSTATE='1')THEN TEMP0<="0000";TEMP1<="0000"; ELSIF(CLK_100'EVENT AND CLK_100='1')THEN IF(TEMP0="1001")THEN IF(TEMP1="1001")THEN TEMP0<="0000";TEMP1<="0000";CLK_M<='1'; ELSE TEMP1<=TEMP1+1;TEMP0<="0000";CLK_M<='0'; END IF; ELSE TEMP0<=TEMP0+1;CLK_M<='0'; END IF; END IF; END PROCESS; R1<=TEMP1;R0<=TEMP0; END BLOCK U2; U3:BLOCK BEGIN PROCESS(CLK_M) BEGIN IF(CLRSTATE='1')THEN TEMP2<="0000";TEMP3<="0000"; ELSIF(CLK_M'EVENT AND CLK_M='1')THEN IF(TEMP2="1001")THEN IF(TEMP3="0101")THEN TEMP2<="0000";TEMP3<="0000";CLK_F<='1'; ELSE TEMP3<=TEMP3+1;TEMP2<="0000";CLK_F<='0'; END IF; ELSE TEMP2<=TEMP2+1;CLK_F<='0'; END IF; END IF; END PROCESS; R3<=TEMP3;R2<=TEMP2; END BLOCK U3; U4:BLOCK BEGIN PROCESS(CLK_F) BEGIN IF(CLRSTATE='1')THEN--清零信号有效时 TEMP5<="0000";TEMP4<="0000"; ELSIF(CLK_F'EVENT AND CLK_F='1')THEN IF(TEMP4="1001")THEN IF(TEMP5="0101")THEN TEMP4<="0000";TEMP5<="0000"; ELSE TEMP5<=TEMP5+1;TEMP4<="0000"; END IF; ELSE TEMP4<=TEMP4+1; END IF; END IF; END PROCESS; R5<=TEMP5;R4<=TEMP4; END BLOCK U4; END ARCHITECTURE RTL;

以下是将vhdl代码改写为Verilog代码后的结果: ```verilog module COUNTER_100 ( input CLK, input [2:0] S, input ST, input CLR, output [3:0] R5, output [3:0] R4, output [3:0] R3, output [3:0] R2, output [3:0] R1, output [3:0] R0 ); reg [3:0] TEMP5 = 4'b0000; reg [3:0] TEMP4 = 4'b0000; reg [3:0] TEMP3 = 4'b0000; reg [3:0] TEMP2 = 4'b0000; reg [3:0] TEMP1 = 4'b0000; reg [3:0] TEMP0 = 4'b0000; reg CLK_100; reg CLK_M; reg CLK_F; reg CLRSTATE; always @(S, ST, CLR) begin if (S == 3'b101) begin if (ST) begin CLK_100 <= CLK; CLRSTATE <= 1'b0; end else begin CLK_100 <= 1'b0; if (CLR) begin CLRSTATE <= 1'b1; end else begin CLRSTATE <= 1'b0; end end end else begin CLRSTATE <= 1'b0; end end always @(posedge CLK_100) begin if (CLRSTATE) begin TEMP0 <= 4'b0000; TEMP1 <= 4'b0000; end else begin if (TEMP0 == 4'b1001) begin if (TEMP1 == 4'b1001) begin TEMP0 <= 4'b0000; TEMP1 <= 4'b0000; CLK_M <= 1'b1; end else begin TEMP1 <= TEMP1 + 1; TEMP0 <= 4'b0000; CLK_M <= 1'b0; end end else begin TEMP0 <= TEMP0 + 1; CLK_M <= 1'b0; end end end assign R1 = TEMP1; assign R0 = TEMP0; always @(posedge CLK_M) begin if (CLRSTATE) begin TEMP2 <= 4'b0000; TEMP3 <= 4'b0000; end else begin if (TEMP2 == 4'b1001) begin if (TEMP3 == 4'b0101) begin TEMP2 <= 4'b0000; TEMP3 <= 4'b0000; CLK_F <= 1'b1; end else begin TEMP3 <= TEMP3 + 1; TEMP2 <= 4'b0000; CLK_F <= 1'b0; end end else begin TEMP2 <= TEMP2 + 1; CLK_F <= 1'b0; end end end assign R3 = TEMP3; assign R2 = TEMP2; always @(posedge CLK_F) begin if (CLRSTATE) begin TEMP5 <= 4'b0000; TEMP4 <= 4'b0000; end else begin if (TEMP4 == 4'b1001) begin if (TEMP5 == 4'b0101) begin TEMP4 <= 4'b0000; TEMP5 <= 4'b0000; end else begin TEMP5 <= TEMP5 + 1; TEMP4 <= 4'b0000; end end else begin TEMP4 <= TEMP4 + 1; end end end assign R5 = TEMP5; assign R4 = TEMP4; endmodule ``` 注意:以上代码是将vhdl代码直接转换为Verilog代码,没有进行任何优化。如果有需要,可以根据具体的需求进行进一步优化。

相关推荐

module test_top( output reg pin98_te3, //codein output reg pin99_te4, //cmi_ceded output reg pin100_te5, //cmi_decoded input wire pin103_te6, //system clk 7.68Mhz input wire rst //reset ); reg [3:0] counter; reg clk1; reg clk2; always@(posedge pin103_te6 or negedge rst) begin if(!rst) counter <= 4'b0; else if(counter == 4'b1111) begin counter <= 4'b0; end else if(pin103_te6) begin counter <= counter+1; end end always@(posedge pin103_te6 or negedge rst) begin if(!rst) clk1 <= 0; else if(counter[3] == 0) clk1 <= 1'b0; else if(counter[3] == 1) clk1 <= 1'b1; end always@(posedge pin103_te6 or negedge rst) begin if(!rst) clk2 <= 0; else if(counter[2] == 0) clk2 <= 1'b1; else if(counter[2] == 1) clk2 <= 1'b0; end reg [3:0] num; always@(posedge clk1 or negedge rst) begin if(!rst) begin num <= 4'b0; end else if(num == 4'b1111) begin num <= 4'b0; end else num <= num+1; case(num) 4'b0110:pin98_te3 <=1; 4'b0111:pin98_te3 <=1; 4'b1000:pin98_te3 <=1; 4'b1001:pin98_te3 <=1; 4'b1010:pin98_te3 <=0; 4'b1011:pin98_te3 <=1; 4'b1100:pin98_te3 <=0; 4'b1101:pin98_te3 <=0; 4'b1110:pin98_te3 <=0; 4'b1111:pin98_te3 <=1; default:pin98_te3 <=0; endcase end reg [1:0] cmi_reg; reg flag =0; always@(posedge clk1) begin if(pin98_te3 == 0) cmi_reg <= 2'b01; else if(pin98_te3 == 1) begin if(flag == 0) begin cmi_reg <= 2'b00; flag <=~flag; end else if(flag == 1) begin cmi_reg <= 2'b11; flag <=~flag; end end end reg flag0 = 1'b0; always@(posedge clk2) begin flag0 <= flag0 + 1; if(flag0 == 1) pin99_te4 <= cmi_reg[0]; else if(flag0 == 0) pin99_te4<=cmi_reg[1]; end always@(posedge clk2) begin if(cmi_reg == 2'b01) pin100_te5<=0; else if(cmi_reg==2'b00 || cmi_reg==2'b11) pin100_te5<=1; end endmodule代码作用

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。