dataset_info = _DATASETS[name] dataset_library = __import__(dataset_info[0], fromlist=[dataset_info[1]])
时间: 2024-01-27 17:04:29 浏览: 164
这段代码的作用是根据给定的数据集名称 `name`,导入对应的数据集库,然后返回该库的对象。具体实现是通过一个全局变量 `_DATASETS` 中维护了数据集名称与其所在库的信息,其中 `_DATASETS` 是一个字典,键为数据集名称,值为一个元组,元组的第一个元素是数据集库的名称,第二个元素是数据集库中需要导入的对象名称。接着使用 Python 内置的 `__import__` 函数导入数据集库,并且通过 `fromlist` 参数指定需要导入的对象名称。最后将导入的对象返回。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数训练模型的Pytorch代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss
# 定义模型
class MyModel(nn.Module):
def __init__(self, num_classes):
super(MyModel, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 设置超参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
seed_everything(seed)
# 定义数据增强
transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 定义数据集
dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform)
dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 定义模型及优化器
model = MyModel(num_classes=classes).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=model_lr)
# 使用LDAM损失函数
cls_num_list = [dataset_train.targets.count(i) for i in range(classes)]
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30)
# 训练模型
for epoch in range(start_epoch, EPOCHS+1):
model.train()
for i, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
mixup_data, mixup_target = mixup_fn(data, target) # 数据增强
optimizer.zero_grad()
output = model(mixup_data)
loss = criterion(output, mixup_target)
if use_dp:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD)
optimizer.step()
if use_ema:
ema_model = ModelEMA(model, decay=model_ema_decay)
ema_model.update(model)
else:
ema_model = None
test_acc = test(model, test_loader, DEVICE)
if test_acc > Best_ACC:
Best_ACC = test_acc
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'Best_ACC': Best_ACC,
}, is_best=True)
```
帮我用pytorch代码实现在模型中使用LDAMLoss损失函数, 数据集读取代码如下: dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) , mixup数据增强代码如下: mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 训练过程部分代码如下: for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) samples, targets = mixup_fn(data, target) loss output = model(samples) optimizer.zero_grad() if use_amp: with torch.cuda.amp.autocast(): loss = torch.nan_to_num(criterion_train(output, targets)) scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) scaler.step(optimizer) scaler scaler.update() else: loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step()
首先,需要安装LDAM-loss的pytorch实现,可以通过以下代码进行安装:
```python
!pip install ldam
```
然后,在训练过程中,需要进行以下步骤:
1. 定义LDAM-loss函数:
```python
from ldam import LDAMLoss
criterion_train = LDAMLoss(cls_num_list=[...], max_m=0.5, s=30)
```
其中,`cls_num_list`是每个类别的样本数目,`max_m`是最大的margin值,`s`是缩放因子。
2. 计算输出并计算损失函数:
```python
loss_output = model(samples)
loss = criterion_train(loss_output, targets)
```
3. 反向传播和梯度更新:
```python
optimizer.zero_grad()
if use_amp:
with torch.cuda.amp.autocast():
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
```
注意,LDAM-loss函数需要在构建模型之前计算每个类别的样本数目,并且在训练过程中需要使用这些信息。可以通过以下代码计算每个类别的样本数目:
```python
import numpy as np
cls_num_list = np.zeros(classes)
for _, label in train_loader.dataset:
cls_num_list[label] += 1
```
阅读全文