请将此代码修改为tensorflow2.7,cuda11.2版本的代码 import tensorflow as tf from tensorflow import keras from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, ReLU from tensorflow.keras.utils import to_categorical # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据预处理 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 x_train = tf.expand_dims(x_train, axis=3) x_test = tf.expand_dims(x_test, axis=3) y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # 构建LeNet-5模型 model = Sequential([ Conv2D(6, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Conv2D(16, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Flatten(), Dense(units=120, activation='relu'), Dense(units=84, activation='relu'), Dense(units=10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=30, validation_data=(x_test, y_test)) # 在测试集上输出精度 test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc)
时间: 2023-10-09 21:07:38 浏览: 119
tensorflow.keras.datasets.mnist加载的mnist数据集
这是一个类似的 TensorFlow 2.7 和 CUDA 11.2 版本的代码示例:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, ReLU
from tensorflow.keras.utils import to_categorical
# Set GPU device
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)
print("Using GPU:", tf.test.gpu_device_name())
except RuntimeError as e:
print(e)
# Load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Preprocess data
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = tf.expand_dims(x_train, axis=3)
x_test = tf.expand_dims(x_test, axis=3)
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
# Define LeNet-5 model
model = Sequential([
Conv2D(6, kernel_size=3, strides=1),
MaxPooling2D(pool_size=2, strides=2),
ReLU(),
Conv2D(16, kernel_size=3, strides=1),
MaxPooling2D(pool_size=2, strides=2),
ReLU(),
Flatten(),
Dense(units=120, activation='relu'),
Dense(units=84, activation='relu'),
Dense(units=10, activation='softmax')
])
# Compile model
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Train model
model.fit(x_train, y_train, batch_size=128, epochs=30, validation_data=(x_test, y_test))
# Evaluate model on test set
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)
```
这个代码实现了一个 LeNet-5 模型,用于识别 MNIST 手写数字。它使用了 TensorFlow 2.7 和 CUDA 11.2 版本,并且在 GPU 上训练模型。在代码中,我们首先检查是否有可用的 GPU 设备,并设置 TensorFlow 只使用第一个 GPU 设备。然后,我们加载 MNIST 数据集并对其进行预处理。接下来,我们定义了一个包含两个卷积层和三个全连接层的 LeNet-5 模型,并使用 Adam 优化器和交叉熵损失函数编译了模型。最后,我们在训练集上训练模型,并在测试集上评估模型的准确性。
阅读全文