K1=2^8-1; %光束的精度 lamda=800e-9; %波长 omega=2*pi*c/lamda; %角频率 k0=2*pi/lamda; %波数 w0=1e-5;% 10um %束腰半径,光束的宽度 Sr0=5e-04;% 0.5mm %光束半径 r0=6; %10um aa=0.9; sigma=1.2; %非局域系数σ

时间: 2024-04-06 19:31:01 浏览: 180
这段代码定义了一些变量,包括: - `K1`:一个整型变量,值为 $2^8-1=255$,用于光束的精度。 - `lamda`:一个双精度浮点数,值为 $800\times10^{-9}$,代表光束的波长。 - `omega`:一个双精度浮点数,代表光束的角频率,其值为 $2\pi c/\lambda$,其中 `c` 是光速常量。 - `k0`:一个双精度浮点数,代表光束的波数,其值为 $2\pi/\lambda$。 - `w0`:一个双精度浮点数,代表光束的束腰半径,其值为 $10\mu\text{m}=1\times10^{-5}\text{m}$。 - `Sr0`:一个双精度浮点数,代表光束的半径,其值为 $0.5\text{mm}=5\times10^{-4}\text{m}$。 - `r0`:一个双精度浮点数,代表光束的半径。 - `aa`:一个双精度浮点数,代表非局域系数中的一个常数。 - `sigma`:一个双精度浮点数,代表非局域系数中的 $\sigma$ 值。 这些变量的定义可能是为了后续的计算和使用。
相关问题

Sr=Sr0/w0; %归一化 x =linspace(-Sr,Sr,K1); %生成x、y轴坐标 y =linspace(-Sr,Sr,K1); dx =(2*Sr)/(K1-1); dy =(2*Sr)/(K1-1); %%%%% space step dz =0.1; %%%%%% time step x =[-Sr-dx,x]; y =[-Sr-dy,y]; [X,Y]=meshgrid(x,y); %生成网格矩阵 rr=sqrt(X.^2+Y.^2); kx=(2*pi/(2*Sr+dx))*[-(K1+1)/2:(K1+1)/2-1]; %频域坐标 ky=(2*pi/(2*Sr+dy))*[-(K1+1)/2:(K1+1)/2-1]; period=lamda/c; [Kx,Ky]=meshgrid(kx,ky); T=82.5*period;%s t=linspace(0,T,3000); n2=2.8e-23;% m^2/W % n4=1e-43;% m^4/W^2 tcol=1e-12;% 1ps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % chi3=3.*2.3e-25;%free charge gas % chi5=3e-47; chi3=2e-25;%air % chi3=8.68e-26; %Ar % chi3=4.96e-27;%Ne % chi3=2e-25; I=5e16; %W/m-2w l=0; [phi,rho]=cart2pol(X,Y); %极坐标 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B0=sqrt(2.*I/epsilon/c); u1=airy(-rho+r0); u2=exp(-aa*(rho-r0)).*exp(1i.*l.*phi).*rho.^l; u=B0.*u1.*u2./max(max(u1.*u2)); Zr0=30*10^(-3); %mm z轴的传播距离%%%%%%%%%%%%%%%%%%%%%%%% Zr=Zr0/(k0*(w0)^2); %z坐标的归一化 K2=round(Zr/(dz)); %取点 z=linspace(0,Zr,K2+1); E0=5.1421e11; %原子单位到标准单位的转换 period=lamda/c; % SI % tp=5e-15; %氢原子的电离能 %? T=82.5*period;%s n0=3e25; %中性原子密度 3e25 Zmax=K2+1; Tmax=3000; %round(T/(8e-18)) %grid number of time t=linspace(0,T,Tmax); dt=T/(Tmax-1); zz=linspace(0,0,Zmax); zz(1:Zmax/2)=(-Zmax/2:-1)*dz; zz(Zmax/2+1:Zmax)=(0:Zmax/2-1)*dz;

这段代码主要是用来生成空间和时间的网格,并定义一些常数和参数。具体来说,首先将初始的光束半径 Sr0 归一化,并用 linspace 函数生成 x 和 y 轴的坐标。然后计算空间步长 dx 和 dy,时间步长 dz,并将 x 和 y 扩展一倍,用 meshgrid 函数生成网格矩阵 X 和 Y。接着计算频域坐标 kx 和 ky,并用 meshgrid 函数生成频域网格矩阵 Kx 和 Ky。定义时间长度 T 和时间坐标 t,并计算空间中的非线性折射率 n2。最后定义一些常数和参数,包括原子单位到标准单位的转换因子 E0、氢原子的电离能 tp、中性原子密度 n0、传播距离 Zr0 和网格数量 Zmax 和 Tmax 等。

% 生成OOK信号 fs = 1e6; % 采样率 T = 1/fs; % 采样时间间隔 f = 10e3; % 载波频率 duration = 1; % 信号持续时间 t = 0:T:duration-T; % 时间序列 data = randi([0 1], 1, length(t)); % 随机生成0和1的数据 signal = data.*sin(2*pi*f*t); % OOK信号 % 光纤传输 len = 10; % 光纤长度(km) lamda = 1550; % 中心波长(nm) c = 3e8; % 光速(m/s) D = 17; % 色散系数(ps/nm/km) beta2 = -D*(lamda*1e-9)^2/(2*pi*c); % 色散参数 L = len*1e3; % 光纤长度(m) wavelength = lamda*1e-9; % 光波长(m) span = 10; % 传输距离间隔(km) numSpans = L/span; % 总传输距离间隔数 spanLen = span*1e3; % 单个传输距离间隔长度(m) dispComp = exp(1j*0.5*beta2*wavelength^2*L*T^2); % 色散补偿系数 signal_out = zeros(size(signal)); % 接收信号 for i = 1:numSpans startIdx = (i-1)*spanLen/T+1; endIdx = i*spanLen/T; signal_span = signal(startIdx:endIdx); % 当前距离间隔内的信号 signal_span = ifft(fft(signal_span).*dispComp); % 色散补偿 signal_out(startIdx:endIdx) = signal_span; % 累加接收信号 end % 绘制信号波形 figure; subplot(2,1,1); plot(t, signal); xlabel('Time (s)'); ylabel('Amplitude'); title('Original Signal'); subplot(2,1,2); plot(t, abs(signal_out)); xlabel('Time (s)'); ylabel('Amplitude'); title('Received Signal after Dispersion Compensation');

这段代码的作用是生成一个OOK信号,并通过模拟光纤传输的方式进行色散补偿,最终绘制出接收信号的波形。其中,OOK信号的频率为10kHz,持续时间为1秒,随机生成0和1的数据,通过乘以正弦波的方式生成信号。接着,通过设定光纤长度、中心波长、色散系数等参数,计算出色散参数,并通过循环模拟光纤传输的过程,每隔10km对信号进行一次色散补偿,并累加接收信号。最后,绘制出原始信号和接收信号的波形图。
阅读全文

相关推荐

function [Fyrr,Fxrr,dFx_ds_4,dFy_ds_4]= fcn(Fzrr,alfa4,Srr,urr,mu) % This block supports an embeddable subset of the MATLAB language. % See the help menu for details. epsilon=0.015; Ca=30000; Cs=50000; Lamda=muFzrr(1-epsilonurrsqrt(Srr^2+(tan(alfa4))^2))(1-Srr)/(2sqrt(Cs^2Srr^2+Ca^2(tan(alfa4))^2)); if Lamda<1 f=Lamda*(2-Lamda); Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(5Fzrrmu*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) + (5FzrrSrrmu((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (125FzrrSrr^2mu((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrr^2muurr*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(80*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); dFy_ds_4=(3Fzrrmutan(alfa4)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (75FzrrSrrmutan(alfa4)((Fzrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (9FzrrSrrmuurrtan(alfa4)((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(400*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); else f=1; Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(50000Srr)/(Srr - 1)^2 - 50000/(Srr - 1); dFy_ds_4=(30000*tan(alfa4))/(Srr - 1)^2; end

import os import cv2 import numpy as np def gabor_kernel(ksize, sigma, gamma, lamda, alpha, psi): """ reference https://en.wikipedia.org/wiki/Gabor_filter """ sigma_x = sigma sigma_y = sigma / gamma ymax = xmax = ksize // 2 # 9//2 xmin, ymin = -xmax, -ymax # print("xmin, ymin,xmin, ymin",xmin, ymin,ymax ,xmax) # X(第一个参数,横轴)的每一列一样, Y(第二个参数,纵轴)的每一行都一样 (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # 生成网格点坐标矩阵 # print("y\n",y) # print("x\n",x) x_alpha = x * np.cos(alpha) + y * np.sin(alpha) y_alpha = -x * np.sin(alpha) + y * np.cos(alpha) print("x_alpha[0][0]", x_alpha[0][0], y_alpha[0][0]) exponent = np.exp(-.5 * (x_alpha ** 2 / sigma_x ** 2 + y_alpha ** 2 / sigma_y ** 2)) # print(exponent[0][0]) # print(x[0],y[0]) kernel = exponent * np.cos(2 * np.pi / lamda * x_alpha + psi) print(kernel) # print(kernel[0][0]) return kernel def gabor_filter(gray_img, ksize, sigma, gamma, lamda, psi): filters = [] for alpha in np.arange(0, np.pi, np.pi / 4): print("alpha", alpha) kern = gabor_kernel(ksize=ksize, sigma=sigma, gamma=gamma, lamda=lamda, alpha=alpha, psi=psi) filters.append(kern) gabor_img = np.zeros(gray_img.shape, dtype=np.uint8) i = 0 for kern in filters: fimg = cv2.filter2D(gray_img, ddepth=cv2.CV_8U, kernel=kern) gabor_img = cv2.max(gabor_img, fimg) i += 1 p = 1.25 gabor_img = (gabor_img - np.min(gabor_img, axis=None)) ** p _max = np.max(gabor_img, axis=None) gabor_img = gabor_img / _max print(gabor_img) gabor_img = gabor_img * 255 return gabor_img.astype(dtype=np.uint8) def main(): dir_path = '7/' files = os.listdir(dir_path) for i in files: print(i) img = cv2.imread(dir_path + "/" + i) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gabor_img = gabor_filter(img_gray, ksize=9, sigma=1, gamma=0.5, lamda=5, psi=-np.pi / 2) Img_Name = "5/gabor/" + str(i) cv2.imwrite(Img_Name, gabor_img) main()

大家在看

recommend-type

计算机控制实验74HC4051的使用

天津大学本科生计算机控制技术实验报告,欢迎参考
recommend-type

软件工程-总体设计概述(ppt-113页).ppt

软件工程-总体设计概述(ppt-113页).ppt
recommend-type

多文档应用程序MDI-vc++、MFC基础教程

2.多文档应用程序(MDI) 在多文档程序中,允许用户在同一时刻操作多个文档。例如,Viusal C++ 6.0集成开发环境就是一个多文档应用程序,如下图所示。
recommend-type

中国移动5G规模试验测试规范--核心网领域--SA基础网元性能测试分册.pdf

目 录 前 言............................................................................................................................ 1 1. 范围........................................................................................................................... 2 2. 规范性引用文件....................................................................................................... 2 3. 术语、定义和缩略语............................................................................................... 2 3.1. 测试对象........................................................................................................ 3 4. 测试对象及网络拓扑............................................................................................... 3 ................................................................................................................................ 3 4.1. 测试组网........................................................................................................ 3 5. 业务模型和测试方法............................................................................................... 6 5.1. 业务模型........................................................................................................ 6 5.2. 测试方法........................................................................................................ 7 6. 测试用例................................................................................................................... 7 6.1. AMF性能测试................................................................................................ 7 6.1.1. 注册请求处理能力测试..................................................................... 7 6.1.2. 基于业务模型的单元容量测试.........................................................9 6.1.3. AMF并发连接管理性能测试........................................................... 10 6.2. SMF性能测试............................................................................................... 12 6.2.1. 会话创建处理能力测试................................................................... 12 6.2.2. 基
recommend-type

CAN分析仪 解析 DBC uds 源码

CANas分析软件.exe 的源码,界面有些按钮被屏蔽可以自行打开,5分下载 绝对惊喜 意想不到的惊喜 仅供学习使用

最新推荐

recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph
recommend-type

Arachne:实现UDP RIPv2协议的Java路由库

资源摘要信息:"arachne:基于Java的路由库" 知识点详细说明: 1. 知识点一:基于Java的路由库 - Arachne是一个基于Java开发的路由库,它允许开发者在Java环境中实现网络路由功能。 - Java在企业级应用中广泛使用,具有跨平台特性,因此基于Java的路由库能够适应多样的操作系统和硬件环境。 - 该路由库的出现,为Java开发者提供了一种新的网络编程选择,有助于在Java应用中实现复杂的路由逻辑。 2. 知识点二:简单Linux虚拟机上运行 - Arachne能够在资源受限的简单Linux虚拟机上运行,这意味着它对系统资源的要求不高,可以适用于计算能力有限的设备。 - 能够在虚拟机上运行的特性,使得Arachne可以轻松集成到云平台和虚拟化环境中,从而提供网络服务。 3. 知识点三:UDP协议与RIPv2路由协议 - Arachne实现了基于UDP协议的RIPv2(Routing Information Protocol version 2)路由协议。 - RIPv2是一种距离向量路由协议,用于在网络中传播路由信息。它规定了如何交换路由表,并允许路由器了解整个网络的拓扑结构。 - UDP协议具有传输速度快的特点,适用于RIP这种对实时性要求较高的网络协议。Arachne利用UDP协议实现RIPv2,有助于降低路由发现和更新的延迟。 - RIPv2较RIPv1增加了子网掩码和下一跳地址的支持,使其在现代网络中的适用性更强。 4. 知识点四:项目构建与模块组成 - Arachne项目由两个子项目构成,分别是arachne.core和arachne.test。 - arachne.core子项目是核心模块,负责实现路由库的主要功能;arachne.test是测试模块,用于对核心模块的功能进行验证。 - 使用Maven进行项目的构建,通过执行mvn clean package命令来生成相应的构件。 5. 知识点五:虚拟机环境配置 - Arachne在Oracle Virtual Box上的Ubuntu虚拟机环境中进行了测试。 - 虚拟机的配置使用了Vagrant和Ansible的组合,这种自动化配置方法可以简化环境搭建过程。 - 在Windows主机上,需要安装Oracle Virtual Box和Vagrant这两个软件,以支持虚拟机的创建和管理。 - 主机至少需要16 GB的RAM,以确保虚拟机能够得到足够的资源,从而提供最佳性能和稳定运行。 6. 知识点六:Vagrant Box的使用 - 使用Vagrant时需要添加Vagrant Box,这是一个预先配置好的虚拟机镜像文件,代表了特定的操作系统版本,例如ubuntu/trusty64。 - 通过添加Vagrant Box,用户可以快速地在本地环境中部署一个标准化的操作系统环境,这对于开发和测试是十分便利的。 7. 知识点七:Java技术在IT行业中的应用 - Java作为主流的编程语言之一,广泛应用于企业级应用开发,包括网络编程。 - Java的跨平台特性使得基于Java开发的软件具有很好的可移植性,能够在不同的操作系统上运行,无需修改代码。 - Java也具有丰富的网络编程接口,如Java NIO(New Input/Output),它提供了基于缓冲区的、面向块的I/O操作,适合于需要处理大量网络连接的应用程序。 8. 知识点八:网络协议与路由技术 - 理解各种网络协议是网络工程师和开发人员的基本技能之一,RIPv2是其中一种重要协议。 - 路由技术在网络架构设计中占有重要地位,它决定了数据包在网络中的传输路径。 - Arachne库的使用可以加深开发者对路由协议实现和网络架构设计的理解,帮助构建更加稳定和高效的网络系统。 通过上述知识点的介绍,我们可以看出Arachne作为一个基于Java的路由库,在技术实现、项目构建、环境配置以及网络技术等多个方面有着其独特之处,对Java开发者来说,这是一项值得学习和使用的技术资源。