nn.BatchNorm2d(outc_max//2)

时间: 2023-12-28 08:04:01 浏览: 23
nn.BatchNorm2d(outc_max//2)是一个用于对二维输入进行批量归一化的函数。它可以用于卷积神经网络中的每个卷积层的输出。在这个函数中,outc_max是输出通道数的最大值。通过将outc_max除以2,可以得到批量归一化层的输出通道数。这个函数的作用是对输入进行归一化,使得每个通道的均值接近0,方差接近1,从而提高模型的稳定性和收敛速度。
相关问题

class Residual(nn.Module): def __init__(self,in_c,out_c): super(Residual,self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), nn.Conv2d(in_channels = out_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), ) self.botneck = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2) def forward(self,x): x_prim = x x = self.conv(x) x = self.botneck(x_prim) + x x = self.pool(x) return x 用tensorflow定义

以下是使用tensorflow定义的Residual类: ``` import tensorflow as tf from tensorflow.keras import layers class Residual(layers.Layer): def __init__(self, in_c, out_c): super(Residual, self).__init__() self.conv = tf.keras.Sequential([ layers.Conv2D(out_c, kernel_size=3, padding='same'), layers.BatchNormalization(), layers.ReLU(), layers.Conv2D(out_c, kernel_size=3, padding='same'), layers.BatchNormalization(), layers.ReLU() ]) self.botneck = layers.Conv2D(out_c, kernel_size=1) self.pool = layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)) def call(self, x): x_prim = x x = self.conv(x) x = self.botneck(x_prim) + x x = self.pool(x) return x ``` 在这个tensorflow版本的Residual类中,我使用了tensorflow的layers.Layer模块,并且对应用到了tensorflow中的层。使用layers.Conv2D()代替了nn.Conv2d(),使用layers.BatchNormalization()代替了nn.BatchNorm2d(),使用layers.ReLU()代替了nn.ReLU()。同时,我使用了layers.MaxPooling2D()代替了nn.MaxPool2d()。最后,在call()方法中,我使用了tensorflow的加法操作tf.add()代替了+。

class EnhancedResidual(nn.Module): def __init__(self,in_c,out_c,fm_sz,net_type = 'ta'): super(EnhancedResidual,self).__init__() self.net_type = net_type self.conv1 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = in_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(in_c), nn.ReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), ) self.botneck = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2) if net_type == 'ta': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = in_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'sa': self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = out_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'cbam': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) 改写为tensorflow形式

把上述PyTorch代码转换成TensorFlow代码如下: ```python import tensorflow as tf class EnhancedResidual(tf.keras.layers.Layer): def __init__(self, in_c, out_c, fm_sz, net_type='ta'): super(EnhancedResidual, self).__init__() self.net_type = net_type self.conv1 = tf.keras.Sequential([ tf.keras.layers.Conv2D(filters=in_c, kernel_size=3, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU() ]) self.conv2 = tf.keras.Sequential([ tf.keras.layers.Conv2D(filters=out_c, kernel_size=3, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU() ]) self.botneck = tf.keras.layers.Conv2D(filters=out_c, kernel_size=1) self.pool = tf.keras.layers.MaxPool2D(pool_size=2, strides=2) if net_type == 'ta': self.spa = SpatialAttention() # 需要自行定义SpatialAttention类 self.ca = ChannelAttention(in_planes=in_c, ratio=in_c) # 需要自行定义ChannelAttention类 self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=in_c // 4, head_n=4, fm_sz=fm_sz) # 需要自行定义MultiHeadSelfAttention类 elif net_type == 'sa': self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=out_c // 4, head_n=4, fm_sz=fm_sz) # 需要自行定义MultiHeadSelfAttention类 elif net_type == 'cbam': self.spa = SpatialAttention() # 需要自行定义SpatialAttention类 self.ca = ChannelAttention(in_planes=in_c, ratio=in_c) # 需要自行定义ChannelAttention类 def call(self, inputs): x = self.conv1(inputs) x = self.conv2(x) shortcut = self.botneck(inputs) x += shortcut x = self.pool(x) if self.net_type == 'ta': x = self.spa(x) * x x = self.ca(x) * x x = self.sa(x) + x elif self.net_type == 'sa': x = self.sa(x) + x elif self.net_type == 'cbam': x = self.spa(x) * x x = self.ca(x) * x return x ``` 需要注意的是,这里用到了一些自定义的类,如SpatialAttention、ChannelAttention和MultiHeadSelfAttention,需要根据具体情况自行实现。

相关推荐

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h) return self.conv(out) 在 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None))这里继续添加 self.pool_w1 = nn.MaxPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1))

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1)) self.pool_w1 = nn.MaxPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) x_h1 = self.pool_h1(x) x_w1 = self.pool_w1(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w, x_h1, x_w1], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w, _, _ = torch.split(y, [h, w, h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) x_w1 = x_w1.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() a_w1 = self.conv_w(x_w1).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_w1) return self.conv(out)在里面修改一下,换成这个y = torch.cat([x_h+x_h1, x_w+x_w1], dim=2)

import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转换为Tensor类型 transforms.Normalize((0.1307,), (0.3081,)) # 标准化,使得均值为0,标准差为1 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='C:/MNIST', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='C:/MNIST', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.pool(out) out = out.view(-1, 64 * 7 * 7) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 实例化模型并定义损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个batch打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() # 进入测试模式,关闭Dropout和BatchNormalization层 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))运行一下此代码

self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) )这是SA_modules的定义代码块,而 for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features)是SA_modules的调用代码块,而这是PointnetSAModuleMSG类的父类的代码:class _PointnetSAModuleBase(nn.Module): def __init__(self): super().__init__() self.npoint = None self.groupers = None self.mlps = None self.pool_method = 'max_pool' def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor): """ :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: :return: new_xyz: (B, npoint, 3) tensor of the new features' xyz new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if new_xyz is None: new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample) new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample) if self.pool_method == 'max_pool': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) else: raise NotImplementedError new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1);运行时程序报错提示我在调用SA_modules时传递的三个参数,现在看来应该是多出了参数channel_out,我该怎么修改代码才能让SA_modules顺利接受三个参数并正常运行

最新推荐

recommend-type

概率论与数理统计试卷三套(含答案)

2020-2021年概率论与数理统计试卷
recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB归一化实战指南:从零到一,轻松提升模型性能

![MATLAB归一化实战指南:从零到一,轻松提升模型性能](https://pic1.zhimg.com/80/v2-fd366800ef0bdf29c804ce25c0276778_1440w.webp) # 1. 归一化的理论基础** 归一化是一种数据预处理技术,旨在将数据缩放到特定范围内,通常是[0, 1]或[-1, 1]。通过归一化,可以消除数据量纲上的差异,使不同特征具有可比性,从而提高机器学习模型的性能。 归一化背后的基本原理是,在训练机器学习模型时,模型的学习过程会受到数据分布的影响。如果数据分布不均匀,某些特征可能具有较大的值域,而其他特征的值域较小。这会导致模型在训练过
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。
recommend-type

Java加密技术

加密解密,曾经是我一个毕业设计的重要组件。在工作了多年以后回想当时那个加密、 解密算法,实在是太单纯了。 言归正传,这里我们主要描述Java已经实现的一些加密解密算法,最后介绍数字证书。 如基本的单向加密算法: ● BASE64 严格地说,属于编码格式,而非加密算法 ● MD5(Message Digest algorithm 5,信息摘要算法) ● SHA(Secure Hash Algorithm,安全散列算法) ● HMAC(Hash Message AuthenticationCode,散列消息鉴别码) 复杂的对称加密(DES、PBE)、非对称加密算法: ● DES(Data Encryption Standard,数据加密算法) ● PBE(Password-based encryption,基于密码验证) ● RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman) ● DH(Diffie-Hellman算法,密钥一致协议) ● DSA(Digital Signature Algorithm,数字签名) ● ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学) 本篇内容简要介绍 BASE64、MD5、SHA、HMAC 几种方法。 MD5、SHA、HMAC 这三种加密算法,可谓是非可逆加密,就是不可解密的加密方法。我 们通常只把他们作为加密的基础。单纯的以上三种的加密并不可靠。 BASE64 按照 RFC2045 的定义,Base64 被定义为:Base64 内容传送编码被设计用来把任意序列 的 8 位字节描述为一种不易被人直接识别的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.) 常见于邮件、http 加密,截取 http 信息,你就会发现登录操作的用户名、密码字段通 过 BASE64 加密的。 通过 java 代码实现如下: