子集价值题目描述:对于一个包含 n 个元素的序列 a=[a1, a2, , an],定义这个序
时间: 2023-09-14 16:01:03 浏览: 185
列的子集价值为所有子集中元素之和的最小值。请实现一个算法,计算给定序列 a 的子集价值。
解题思路:
对于一个序列 a,它的所有子集可以用位运算来表示。通过遍历所有二进制数,将每个二进制数和 a 中的元素进行按位与运算,就可以得到相应的子集。
序列 a 的子集个数为 2^n,这个算法的时间复杂度为 O(2^n * n)。
首先初始化一个变量 min_sum,用来存储最小的子集价值。将 min_sum 的初始值设置为正无穷大。
接下来用循环遍历所有的二进制数,从 1 到 2^n-1。每次循环中,将当前的二进制数与序列 a 中的元素按位与,即可以得到当前的子集。
计算当前子集的元素之和,如果这个和比 min_sum 小,就更新 min_sum。
循环结束后,min_sum 的值即为序列 a 的子集价值。
算法实现:
def subset_value(a):
n = len(a)
min_sum = float('inf')
for i in range(1, 2**n):
subset_sum = 0
for j in range(n):
if i & (1 << j):
subset_sum += a[j]
min_sum = min(min_sum, subset_sum)
return min_sum
测试样例:
a = [1, 2, 3]
print(subset_value(a)) # 输出1
解答完毕。
阅读全文