优先级调度算法C++
时间: 2023-11-14 19:06:43 浏览: 170
优先级调度算法是一种用于操作系统进程调度的算法。它根据进程的优先级来确定执行顺序,优先级较高的进程会被优先执行。下面是一个简单的优先级调度算法的伪代码示例:
```
1. 初始化就绪队列和优先级队列
2. 循环直到就绪队列为空:
3. 从就绪队列中选择优先级最高的进程
4. 执行该进程
5. 更新进程的优先级(如果需要)
6. 将执行完的进程从就绪队列中移除
7. 结束循环
```
在这个算法中,首先需要初始化就绪队列和优先级队列。就绪队列用于存储可以立即执行的进程,而优先级队列用于按照优先级进行排序。然后,不断选择优先级最高的进程执行,执行完毕后更新进程的优先级,并将执行完的进程从就绪队列中移除。最后,当就绪队列为空时结束循环。
相关问题
动态优先级调度算法c++
动态优先级调度算法通常用于实时操作系统(RTOS)中,它可以根据任务的实际运行情况动态调整每个任务的优先级。在C++中,虽然没有直接内置这种算法,但你可以通过自定义数据结构、队列和定时器等机制来模拟。
一种常见的实现方式是结合`std::priority_queue`(优先级队列)和`boost::asio`(一个异步I/O库),例如:
1. **创建任务结构体**:定义一个任务结构体,包含任务标识符、执行函数、当前优先级以及到期时间等信息。
```cpp
struct Task {
std::function<void()> fn;
int priority;
time_point<> deadline;
};
```
2. **优先级队列**:使用`std::priority_queue`存储任务,优先级高的任务先执行。
```cpp
std::priority_queue<Task, std::vector<Task>, std::greater<Task>> taskQueue;
```
3. **添加任务**:将新任务加入队列,并更新其优先级或到期时间。
4. **调度循环**:定期检查队列顶部的任务,如果任务尚未过期且满足执行条件,就调用其执行函数;否则调整优先级或延后执行时间。
**动态调整优先级的例子**:
```cpp
void schedule(Task& t, int newPriority) {
if (t.deadline > now()) {
t.priority = newPriority; // 更新任务优先级
taskQueue.update(t); // 调整队列中的优先级
}
}
```
编制时间片轮转调度算法和静态优先级调度算法C++
时间片轮转调度算法的C++代码如下:
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Process {
public:
int pid;
int arrival_time;
int burst_time;
int remaining_time;
Process(int pid, int arrival_time, int burst_time) {
this->pid = pid;
this->arrival_time = arrival_time;
this->burst_time = burst_time;
this->remaining_time = burst_time;
}
int execute(int time_slice) {
if (remaining_time > time_slice) {
remaining_time -= time_slice;
return time_slice;
} else {
int time_executed = remaining_time;
remaining_time = 0;
return time_executed;
}
}
};
double round_robin_scheduling(vector<Process>& processes, int time_slice) {
int n = processes.size();
vector<Process> remaining_processes = processes;
int current_time = 0;
int waiting_time = 0;
int turnaround_time = 0;
while (!remaining_processes.empty()) {
Process current_process = remaining_processes[0];
remaining_processes.erase(remaining_processes.begin());
if (current_process.arrival_time > current_time) {
current_time = current_process.arrival_time;
}
int time_executed = current_process.execute(time_slice);
current_time += time_executed;
if (current_process.remaining_time == 0) {
waiting_time += current_time - current_process.arrival_time - current_process.burst_time;
turnaround_time += current_time - current_process.arrival_time;
} else {
remaining_processes.push_back(current_process);
}
}
double avg_waiting_time = (double) waiting_time / n;
double avg_turnaround_time = (double) turnaround_time / n;
return avg_waiting_time;
}
```
静态优先级调度算法的C++代码如下:
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Process {
public:
int pid;
int arrival_time;
int burst_time;
int priority;
Process(int pid, int arrival_time, int burst_time, int priority) {
this->pid = pid;
this->arrival_time = arrival_time;
this->burst_time = burst_time;
this->priority = priority;
}
void execute() {
burst_time--;
}
};
double static_priority_scheduling(vector<Process>& processes) {
int n = processes.size();
vector<Process> remaining_processes = processes;
int current_time = 0;
int waiting_time = 0;
int turnaround_time = 0;
while (!remaining_processes.empty()) {
sort(remaining_processes.begin(), remaining_processes.end(), [](Process p1, Process p2){
if (p1.priority == p2.priority) {
return p1.arrival_time < p2.arrival_time;
} else {
return p1.priority > p2.priority;
}
});
Process current_process = remaining_processes[0];
remaining_processes.erase(remaining_processes.begin());
if (current_process.arrival_time > current_time) {
current_time = current_process.arrival_time;
}
current_process.execute();
current_time++;
if (current_process.burst_time == 0) {
waiting_time += current_time - current_process.arrival_time - current_process.priority;
turnaround_time += current_time - current_process.arrival_time;
} else {
remaining_processes.push_back(current_process);
}
}
double avg_waiting_time = (double) waiting_time / n;
double avg_turnaround_time = (double) turnaround_time / n;
return avg_waiting_time;
}
```
阅读全文