def init(self, lr, weight_decay): self.lr = lr self.weight_decay = weight_decay
时间: 2024-01-08 18:59:38 浏览: 100
This code defines the constructor for a class. The constructor takes two arguments: lr and weight_decay. These arguments are used to initialize two instance variables with the same names.
lr represents the learning rate, which is a hyperparameter that determines how quickly the model learns from the data. weight_decay is another hyperparameter that is used to prevent overfitting by adding a penalty term to the loss function.
By setting these instance variables in the constructor, they can be accessed and used throughout the class methods.
相关问题
def init_optimizer(self, **kwargs): # Choose optimizer model = self.model_container.models['model'] try: opt_type = self.cfg.optimizer freeze = getattr(self.cfg, 'freeze', False) or getattr(self.cfg, 'train_classifier', False) if opt_type == 'SGD': print('Using SGD as optimizer') if freeze: print('Freezing weights!') self.optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=self.cfg.learning_rate, momentum=self.cfg.momentum, weight_decay=self.cfg.weight_decay) else: self.optimizer = optim.SGD(model.parameters(), lr=self.cfg.learning_rate, momentum=self.cfg.momentum, weight_decay=self.cfg.weight_decay) elif opt_type == 'Adam': print('Using Adam as optimizer') if freeze: print('Freezing weights!') self.optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay) else: self.optimizer = optim.Adam(model.parameters(), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay) except AttributeError: self.optimizer = optim.SGD(model.parameters(), lr=self.cfg.learning_rate, momentum=self.cfg.momentum, weight_decay=self.cfg.weight_decay)这个函数什么意思
这个函数是一个初始化优化器的函数,它的作用是根据配置文件中的参数选择使用哪种优化器(SGD或Adam),并根据需要决定是否冻结模型权重(freeze),以及设置相应的超参数(学习率、动量、权重衰减等)。如果配置文件中没有指定优化器,则默认使用SGD优化器。在使用SGD优化器时,如果需要冻结权重,则只会更新梯度不为0的权重。这个函数是在模型训练前被调用的,其作用是为模型训练做准备。
解释下面代码: def __init__(self, dcnet, checkpoint="checkpoint", optimizer="adam", lr=1e-5, momentum=0.9, weight_decay=0, clip_norm=None, num_spks=2): self.nnet = dcnet logger.info("DCNet:\n{}".format(self.nnet)) self.optimizer = create_optimizer( optimizer, self.nnet.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) self.nnet.to(device) self.checkpoint = checkpoint self.num_spks = num_spks self.clip_norm = clip_norm if self.clip_norm: logger.info("Clip gradient by 2-norm {}".format(clip_norm)) if not os.path.exists(checkpoint): os.makedirs(checkpoint)
这段代码定义了一个类的初始化方法,其中传入了以下参数:
- dcnet:表示深度神经网络模型
- checkpoint:表示检查点保存路径,默认为"checkpoint"
- optimizer:表示优化器类型,默认为"adam"
- lr:表示学习率,默认为1e-5
- momentum:表示动量,默认为0.9
- weight_decay:表示权重衰减,默认为0
- clip_norm:表示梯度裁剪的范数,默认为None
- num_spks:表示音频信号的通道数,默认为2
在初始化方法中,首先将传入的深度神经网络模型赋值给self.nnet。然后使用create_optimizer函数创建优化器,并将优化器的参数设置为self.nnet.parameters()。接着将self.nnet移动到指定的设备上(device)。再将传入的检查点保存路径、num_spks和clip_norm赋值给self.checkpoint、self.num_spks和self.clip_norm。如果clip_norm不为None,则在日志中输出梯度裁剪的范数。最后,如果检查点保存路径不存在,则创建该路径。
阅读全文