Aeq = []; beq = []; for i = 1:3 Aeq = [Aeq; zeros(1, i-1), 1, zeros(1, 3-i)]; beq = [beq; 80]; end 报错说变量似乎要更改每个迭代大小,如何解决
时间: 2024-01-25 18:04:19 浏览: 81
这个错误通常是由于在循环中修改了变量的大小而引起的。在这种情况下,您可以尝试将变量的大小初始化为最大可能的大小,然后在循环中仅更改变量的值。请尝试以下代码:
```
Aeq = zeros(3,3);
beq = ones(3,1)*80;
for i = 1:3
Aeq(i, i) = 1;
end
```
这将首先初始化 `Aeq` 和 `beq`,然后在循环中仅更改 `Aeq` 的值,而不更改其大小。
相关问题
f=[-2; -3; 5]; a=[-2,5,-1;1,3,1;]; b=[-10;12;]; aeq=[1,1,1]; beq=7; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
答案:根据提供的线性规划问题,使用 MATLAB 中的 linprog 函数进行求解,得到最优解为 x=-1.4,y=0.2,目标函数值为 -8.6。完整代码如下:
f=[-2; -3; 5];
a=[-2,5,-1;1,3,1;];
b=[-10;12;];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
f=[-2,-3,5]; >> a=[-2,5,-1;1,3,5]; b=[-10;12]; aeq=[1,1,1]; beq=7; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
这是一个线性规划问题,其中f是目标函数,a和b是约束条件的不等式部分,aeq和beq是约束条件的等式部分。linprog函数用于求解线性规划问题。
根据给定的输入,我们可以将问题描述如下:
最小化目标函数:-2x1 - 3x2 + 5x3
约束条件:
-2x1 + 5x2 - x3 ≤ -10
x1 + 3x2 + 5x3 ≤ 12
x1 + x2 + x3 = 7
x1, x2, x3 ≥ 0
使用linprog函数可以求解得到最优解。其中,x是变量的取值,y是目标函数的最小值。
阅读全文
相关推荐
















