根据布谷鸟搜索核心原理,创作出新的布谷鸟搜索代码用python写
时间: 2024-02-03 11:13:36 浏览: 150
布谷鸟算法CS优化支持向量机回归算法SVR,python写,自带数据集
布谷鸟搜索是一种基于种群的启发式算法,其核心思想是利用不同的搜索策略来避免陷入局部最优解。下面是一个用Python实现的布谷鸟搜索代码示例:
```python
import numpy as np
# 目标函数
def objective_function(x):
return np.sum(x ** 2)
# 初始化布谷鸟种群
def initialize_cuckoos(num_cuckoos, num_dimensions):
return np.random.uniform(low=-5.0, high=5.0, size=(num_cuckoos, num_dimensions))
# 获取当前最优解
def get_best_solution(cuckoos, objective_function):
fitness = np.zeros(len(cuckoos))
for i in range(len(cuckoos)):
fitness[i] = objective_function(cuckoos[i])
best_index = np.argmin(fitness)
return cuckoos[best_index], fitness[best_index]
# 生成新解
def generate_new_solution(cuckoo, best_solution, step_size):
u = np.random.normal(size=cuckoo.shape)
v = np.random.normal(size=cuckoo.shape)
cuckoo_new = cuckoo + step_size * u + step_size * (best_solution - cuckoo) * v
return cuckoo_new
# 布谷鸟搜索算法
def cuckoo_search(num_cuckoos, num_dimensions, max_iterations, objective_function):
cuckoos = initialize_cuckoos(num_cuckoos, num_dimensions)
best_solution, best_fitness = get_best_solution(cuckoos, objective_function)
for i in range(max_iterations):
# 生成新解
new_cuckoos = np.zeros(cuckoos.shape)
for j in range(num_cuckoos):
new_cuckoos[j] = generate_new_solution(cuckoos[j], best_solution, 0.1)
# 更新最优解
new_solution, new_fitness = get_best_solution(new_cuckoos, objective_function)
if new_fitness < best_fitness:
best_solution, best_fitness = new_solution, new_fitness
# 替换部分巢穴
indices = np.random.randint(num_cuckoos, size=int(0.2 * num_cuckoos))
cuckoos[indices] = new_cuckoos[indices]
return best_solution, best_fitness
```
使用示例:
```python
best_solution, best_fitness = cuckoo_search(num_cuckoos=20, num_dimensions=10, max_iterations=1000, objective_function=objective_function)
print('Best solution:', best_solution)
print('Best fitness:', best_fitness)
```
在这个例子中,我们使用布谷鸟搜索算法来最小化一个简单的函数。你可以根据自己的需求来修改算法参数和目标函数。
阅读全文