基于python+openCV的人脸识别门禁系统的设计与实现

时间: 2023-09-19 20:13:20 浏览: 38
人脸识别门禁系统主要分为以下几个步骤: 1. 采集人脸数据:使用摄像头采集人脸数据,包括正面、侧面、斜视等角度的照片,并将这些数据存储在数据库中。 2. 人脸识别:使用OpenCV库中的人脸识别算法对人脸进行识别,判断是否为已经存储在数据库中的人脸数据。 3. 控制门禁:如果人脸识别结果是已经授权的用户,则开启门禁通过;否则,门禁保持关闭状态。 以下是一个基于Python和OpenCV的人脸识别门禁系统的设计和实现: 1. 安装OpenCV库:使用pip命令安装OpenCV库,命令为:pip install opencv-python。 2. 收集人脸数据:使用摄像头采集人脸数据。可以使用OpenCV库中的cv2.VideoCapture函数来获取摄像头捕获的视频流,使用cv2.imshow函数显示视频流。可以使用cv2.CascadeClassifier函数来检测人脸,并使用cv2.rectangle函数在图像上标记出人脸位置,然后使用cv2.imwrite函数保存人脸图像。 3. 创建人脸数据库:使用Python中的sqlite3库创建一个sqlite3数据库,用于存储已经采集到的人脸数据。可以使用sqlite3库中的execute函数执行SQL语句来创建数据库表格。 4. 人脸识别:使用OpenCV库中的人脸识别算法进行人脸识别。可以使用cv2.face.LBPHFaceRecognizer_create函数创建一个LBPH人脸识别器,并使用train函数训练识别器。在识别过程中,可以使用detectMultiScale函数检测人脸,并使用predict函数对人脸进行识别。 5. 控制门禁:如果人脸识别结果是已经授权的用户,则开启门禁通过;否则,门禁保持关闭状态。 代码示例: ```python import cv2 import sqlite3 # 定义摄像头编号 camera_port = 0 # 定义人脸检测器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 定义LBPH人脸识别器 recognizer = cv2.face.LBPHFaceRecognizer_create() # 创建人脸数据库 def create_database(): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS faces (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, image BLOB NOT NULL)''') conn.commit() conn.close() # 添加人脸数据到数据库 def add_face(name, image): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("INSERT INTO faces (name, image) VALUES (?, ?)", (name, image)) conn.commit() conn.close() # 从数据库中获取人脸数据 def get_faces(): conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("SELECT * FROM faces") rows = c.fetchall() conn.close() return rows # 训练人脸识别器 def train_recognizer(faces): images = [] labels = [] for id, name, image in faces: # 转换为灰度图像 gray_image = cv2.cvtColor(cv2.imdecode(image, cv2.IMREAD_GRAYSCALE), cv2.COLOR_GRAY2BGR) # 检测人脸 faces = face_cascade.detectMultiScale(gray_image, 1.3, 5) for (x, y, w, h) in faces: # 裁剪人脸图像 face = gray_image[y:y+h, x:x+w] # 添加到训练集中 images.append(face) labels.append(id) # 训练识别器 recognizer.train(images, np.array(labels)) # 人脸识别 def recognize_face(): # 打开摄像头 cap = cv2.VideoCapture(camera_port) while True: # 读取视频帧 ret, frame = cap.read() # 转换为灰度图像 gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray_image, 1.3, 5) for (x, y, w, h) in faces: # 裁剪人脸图像 face = gray_image[y:y+h, x:x+w] # 进行识别 id, confidence = recognizer.predict(face) # 如果置信度小于50,则认为识别成功 if confidence < 50: # 获取数据库中对应的人脸数据 conn = sqlite3.connect('face.db') c = conn.cursor() c.execute("SELECT * FROM faces WHERE id=?", (id,)) row = c.fetchone() conn.close() # 显示识别结果 cv2.putText(frame, row[1], (x, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # 控制门禁 open_door() else: # 显示识别失败的结果 cv2.putText(frame, 'Unknown', (x, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) # 显示视频帧 cv2.imshow('Face Recognition', frame) # 等待按键操作 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() # 控制门禁 def open_door(): pass # 主函数 if __name__ == '__main__': create_database() # 添加人脸数据到数据库 add_face('Tom', cv2.imencode('.jpg', cv2.imread('tom.jpg'))[1].tostring()) add_face('Jerry', cv2.imencode('.jpg', cv2.imread('jerry.jpg'))[1].tostring()) # 获取人脸数据 faces = get_faces() # 训练识别器 train_recognizer(faces) # 开始人脸识别 recognize_face() ``` 在上面的代码示例中,我们首先创建了一个sqlite3数据库,用于存储人脸数据。然后,我们使用摄像头采集人脸数据,并将人脸数据添加到数据库中。接着,我们获取人脸数据,并使用训练数据训练了一个LBPH人脸识别器。最后,我们使用摄像头进行人脸识别,如果识别成功则开启门禁通过。

相关推荐

很高兴回答你关于Python和OpenCV人脸识别门禁系统的问题!要实现这样的系统,你需要使用OpenCV库中的人脸识别功能和Python编程语言。 首先,你需要安装OpenCV库。你可以使用以下命令在Python环境中安装它: pip install opencv-python 安装完成后,你可以导入OpenCV库并使用其人脸识别功能。以下是一个简单的示例代码: python import cv2 # 加载人脸识别器 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() # 将图像转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用人脸识别器检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 在图像上标记检测到的人脸 for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3) # 显示图像 cv2.imshow('Face Recognition', frame) # 按下 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和关闭窗口 cap.release() cv2.destroyAllWindows() 这段代码使用摄像头读取图像,并通过人脸识别器检测人脸。检测到的人脸会在图像上用绿色矩形标记出来。按下 'q' 键可以退出程序。 你可以根据你的需求进一步扩展这个基本的示例,例如添加身份验证功能、与门禁系统的集成等。 希望这个示例对你有所帮助!如果还有其他问题,请随时提问。
人脸识别门禁系统是一种基于人脸识别技术的智能门禁系统,其可通过对人脸进行采集、识别和比对,实现对门禁的控制和管理。本文将详细阐述基于python+openCV+dlib+mysql的人脸识别门禁系统的设计与实现。 一、技术选型 本系统主要采用以下技术: 1. Python:作为主要编程语言,用于实现整个系统的逻辑控制和算法设计。 2. OpenCV:作为图像处理库,用于实现人脸检测、特征提取和人脸识别等核心功能。 3. Dlib:作为人脸识别库,用于实现人脸特征点检测和人脸识别等功能。 4. MySQL:作为数据库系统,用于存储人脸特征和相关信息。 二、系统设计 本系统主要包括以下功能模块: 1. 人脸采集模块:用于采集用户的人脸图像,并将其存储到本地或远程数据库中。 2. 人脸检测模块:用于检测人脸区域,提取人脸特征,并将其存储到数据库中。 3. 人脸识别模块:用于识别用户的人脸特征,并与数据库中的人脸特征进行比对,以确定用户身份。 4. 门禁控制模块:根据用户身份结果,控制门禁的开关。 5. 数据库管理模块:用于管理数据库中的人脸特征和相关信息。 三、系统实现 1. 人脸采集模块 人脸采集模块主要是通过摄像头对用户的人脸进行拍摄和保存。代码如下: python import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() cv2.imshow("capture", frame) if cv2.waitKey(1) & 0xFF == ord('q'): #按q键退出 cv2.imwrite("face.jpg", frame) #保存人脸图像 break cap.release() cv2.destroyAllWindows() 2. 人脸检测模块 人脸检测模块主要是通过OpenCV中的CascadeClassifier类进行人脸检测,再通过Dlib中的shape_predictor类进行人脸特征点检测和特征提取。代码如下: python import cv2 import dlib detector = dlib.get_frontal_face_detector() #人脸检测器 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") #特征点检测器 img = cv2.imread("face.jpg") #读取人脸图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #转换为灰度图像 faces = detector(gray, 0) #检测人脸 for face in faces: landmarks = predictor(gray, face) #检测特征点 for n in range(68): x = landmarks.part(n).x y = landmarks.part(n).y cv2.circle(img, (x, y), 2, (0, 255, 0), -1) #绘制特征点 cv2.imshow("face", img) cv2.waitKey(0) cv2.destroyAllWindows() 3. 人脸识别模块 人脸识别模块主要是通过Dlib中的face_recognition类进行人脸特征提取和比对。代码如下: python import face_recognition known_image = face_recognition.load_image_file("known_face.jpg") #读取已知的人脸图像 unknown_image = face_recognition.load_image_file("unknown_face.jpg") #读取待识别的人脸图像 known_encoding = face_recognition.face_encodings(known_image)[0] #提取已知人脸的特征 unknown_encoding = face_recognition.face_encodings(unknown_image)[0] #提取待识别人脸的特征 results = face_recognition.compare_faces([known_encoding], unknown_encoding) #比对人脸特征 if results[0]: print("Match") else: print("No match") 4. 门禁控制模块 门禁控制模块主要是通过GPIO控制门禁的开关。代码如下: python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT) GPIO.output(11, GPIO.HIGH) #开门 time.sleep(5) #等待5秒 GPIO.output(11, GPIO.LOW) #关门 GPIO.cleanup() #清理GPIO资源 5. 数据库管理模块 数据库管理模块主要是通过MySQLdb模块实现对MySQL数据库的连接和操作,包括新建数据库、新建表、插入数据、查询数据等。代码如下: python import MySQLdb #连接数据库 conn = MySQLdb.connect(host="localhost", user="root", passwd="123456", db="test", charset="utf8") #新建表 cursor = conn.cursor() sql = "CREATE TABLE face (id int(11) NOT NULL AUTO_INCREMENT, name varchar(50) NOT NULL, encoding text NOT NULL, PRIMARY KEY (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8;" cursor.execute(sql) #插入数据 name = "张三" encoding = "0.1,0.2,0.3,0.4" sql = "INSERT INTO face (name, encoding) VALUES (%s, %s)" cursor.execute(sql, (name, encoding)) conn.commit() #查询数据 sql = "SELECT * FROM face WHERE name=%s" cursor.execute(sql, (name,)) result = cursor.fetchone() print(result) cursor.close() conn.close() 四、总结 本文主要介绍了基于python+openCV+dlib+mysql的人脸识别门禁系统的设计与实现。该系统主要采用了Python作为主要编程语言,OpenCV、Dlib作为图像处理和人脸识别库,MySQL作为数据库系统。通过对这些技术的应用,实现了人脸采集、检测、识别和门禁控制等核心功能。该系统可以应用于各类场景的门禁控制和身份验证,具有较高的实用价值。
要使用OpenCV实现人脸识别门禁系统,可以按照以下步骤进行: 1. 收集训练数据:收集多个人的照片,并将其保存在一个文件夹中。每个人应该有多张不同角度和光线条件下的照片。 2. 训练人脸识别模型:使用OpenCV的人脸识别器(如Eigenfaces、Fisherfaces或LBPH)对训练数据进行训练,以创建一个人脸识别模型。 3. 捕捉视频流:使用OpenCV捕捉视频流,例如从门禁摄像头。 4. 人脸检测:对每一帧图像进行人脸检测,使用OpenCV的人脸检测器(如Haar Cascade、LBP Cascade或Deep Learning-based detectors)。 5. 人脸识别:对于检测到的每个人脸,使用训练好的人脸识别器进行识别。 6. 控制门禁:根据识别结果,控制门禁开关。 以下是一个简单的代码示例,展示人脸识别门禁系统的实现: python import cv2 # 加载训练数据和识别器模型 recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('trainer.yml') cascadePath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath) # 打开摄像头 cam = cv2.VideoCapture(0) # 控制门禁的函数 def open_door(): # 控制门禁开关的代码 pass while True: # 读取视频流中的帧 ret, frame = cam.read() # 转为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = faceCascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5) # 对每个检测到的人脸进行识别 for (x, y, w, h) in faces: # 识别人脸 id, confidence = recognizer.predict(gray[y:y+h, x:x+w]) # 如果识别结果可靠,打开门禁 if confidence < 100: open_door() # 在人脸周围绘制矩形框 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示结果 cv2.imshow('frame', frame) # 如果按下q键,退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cam.release() # 关闭所有窗口 cv2.destroyAllWindows() 请注意,这只是一个简单的示例,实际的门禁系统需要考虑更多的因素,例如安全性和稳定性。
好的,下面是一个基于人脸识别的门禁系统的设计与实现,并附上代码以及数据库: 1. 硬件设备:需要使用一台摄像头和一台门禁控制器。 2. 软件环境:需要安装OpenCV、Python、Dlib等相关软件。 3. 数据库设计:需要设计一个数据库存储人员信息,包括姓名、照片、权限等信息。 以下是数据库的设计: CREATE TABLE employee ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(50) NOT NULL, photo varchar(255) NOT NULL, permission int(11) NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8; 4. 代码实现:我们需要实现以下功能: - 采集人脸信息:使用摄像头采集人脸信息,存储到数据库中。 - 人脸识别:使用OpenCV和Dlib进行人脸检测和人脸识别,判断是否为已知人员。 - 权限控制:根据人员权限和当前时间,判断是否可以进入。 - 记录日志:记录每个人员的进出时间和门禁状态。 以下是Python代码实现: python import cv2 import dlib import numpy as np import pymysql import time # 连接数据库 conn = pymysql.connect(host='localhost', port=3306, user='root', password='123456', db='face_recognition') cursor = conn.cursor() # 加载人脸检测器和识别器 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') facerec = dlib.face_recognition_model_v1('dlib_face_recognition_resnet_model_v1.dat') # 读取数据库中的人脸信息 cursor.execute('SELECT * FROM employee') rows = cursor.fetchall() known_face_encodings = [] known_face_names = [] for row in rows: name = row[1] photo_path = row[2] permission = row[3] # 读取人脸照片,并进行编码 img = cv2.imread(photo_path) face_locations = detector(img, 1) face_encodings = facerec.compute_face_descriptor(img, face_locations[0]) known_face_encodings.append(face_encodings) known_face_names.append(name) # 打开摄像头 cap = cv2.VideoCapture(0) # 循环处理每一帧图像 while True: ret, img = cap.read() if ret == False: break # 人脸检测 face_locations = detector(img, 1) if len(face_locations) > 0: # 人脸识别 face_encodings = facerec.compute_face_descriptor(img, face_locations[0]) face_distances = np.linalg.norm(known_face_encodings - face_encodings, axis=1) min_index = np.argmin(face_distances) if face_distances[min_index] < 0.6: name = known_face_names[min_index] permission = rows[min_index][3] # 权限控制 if permission == 0: access = False else: current_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) if permission == 1 or permission == 2: access = True else: cursor.execute('SELECT * FROM access_log WHERE name=%s AND access_time>%s', [name, current_time]) rows = cursor.fetchall() if len(rows) > 0: access = False else: access = True # 记录日志 cursor.execute('INSERT INTO access_log(name, access_time, access) VALUES(%s, %s, %s)', [name, current_time, access]) conn.commit() # 显示人员姓名和门禁状态 cv2.putText(img, name, (face_locations[0].left, face_locations[0].top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) if access: cv2.putText(img, 'Access Allowed', (face_locations[0].left, face_locations[0].bottom + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2) else: cv2.putText(img, 'Access Denied', (face_locations[0].left, face_locations[0].bottom + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) # 显示图像 cv2.imshow('Face Recognition', img) if cv2.waitKey(1) & 0xFF == ord('q'): break # 关闭摄像头和数据库连接 cap.release() cv2.destroyAllWindows() cursor.close() conn.close() 以上是一个基于人脸识别的门禁系统的设计与实现,具体实现可以根据实际需求进行调整。
Django是一个基于Python语言的Web开发框架,可以用于实现基于人脸识别的门禁管理系统。 首先,门禁管理系统需要一个用户管理模块,可以通过Django的认证系统来实现用户的注册、登录和权限管理。用户可以通过注册账号并进行身份认证后,才能访问系统的各项功能。 其次,系统需要一个人脸识别模块来实现门禁验证。可以使用Python的OpenCV库和人脸识别算法来实现人脸的采集、训练和识别。系统可以提供一个注册人脸的功能,用户可以通过上传照片或者现场拍摄的方式来注册自己的人脸信息。系统还需提供一个人脸识别的功能,将用户的人脸与已注册的人脸进行比对,如果匹配成功,则允许用户通过门禁。 此外,系统还需要提供一个门禁控制模块,可以通过与硬件设备的交互实现门禁的开关控制。可以通过Django的视图函数来处理前端请求,并通过与门禁控制器的通信实现对门禁的开关控制。 最后,系统还可以提供数据统计和报表分析功能,通过Django的ORM模块来进行数据库操作,对门禁使用情况、人员出入记录等进行数据分析和可视化展示。 总结来说,通过使用Django框架和相关的Python库和算法,可以实现基于人脸识别的门禁管理系统。系统可以包含用户管理、人脸识别、门禁控制和数据统计等功能,提供安全便捷的门禁管理服务。
人脸识别系统是一种基于人脸图像识别技术的智能识别系统,能够通过扫描和分析人脸特征来进行身份验证或识别。而人脸识别系统与门禁系统结合,可以实现更安全、便捷的门禁管理。 使用Python搭建人脸识别系统的门禁系统具体步骤如下: 1. 数据采集:利用摄像头采集人脸图像,同时保存每个人的相关信息,如姓名、ID等。 2. 人脸检测:使用Python中的人脸检测库,比如OpenCV,来进行人脸检测,找到图像中的人脸位置。 3. 人脸特征提取:利用人脸识别算法,如特征点提取算法或深度学习算法,对检测到的人脸进行特征提取。 4. 特征存储:将每个人脸的特征数据与其相关信息进行关联,并保存在数据库中,方便后续的识别比对。 5. 人脸识别:在门禁系统中,当有人进入时,系统会实时采集到人脸图像,并进行人脸识别比对,通过与之前保存的特征数据进行对比,以确定是否为系统中已注册的用户。 6. 门禁控制:如果识别结果为已注册用户,则系统会打开门禁设备,允许其进入;否则,门禁设备会保持关闭状态,拒绝其进入。 人脸识别系统的门禁系统具有以下优点: 1. 高安全性:通过人脸特征进行身份认证,相较于传统的卡片或密码等方式,更难被冒用。 2. 便捷快速:只需一次拍摄人脸图像,系统即可快速识别,无需额外携带卡片或记忆密码。 3. 实时监控:系统可实时监测门禁区域,及时发现异常情况,保障安全性。 4. 管理方便:通过数据库管理人脸特征和相关信息,可以灵活地增加、删除和修改用户信息。 总之,人脸识别系统的门禁系统通过结合人脸识别技术与Python编程实现,为门禁管理带来更高的安全性和便捷性。

最新推荐

市建设规划局gis基础地理信息系统可行性研究报告.doc

市建设规划局gis基础地理信息系统可行性研究报告.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

要将Preference控件设置为不可用并变灰java完整代码

以下是将Preference控件设置为不可用并变灰的Java完整代码示例: ```java Preference preference = findPreference("preference_key"); // 获取Preference对象 preference.setEnabled(false); // 设置为不可用 preference.setSelectable(false); // 设置为不可选 preference.setSummary("已禁用"); // 设置摘要信息,提示用户该选项已被禁用 preference.setIcon(R.drawable.disabled_ico

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

PostgreSQL 中图层相交的端点数

在 PostgreSQL 中,可以使用 PostGIS 扩展来进行空间数据处理。如果要计算两个图层相交的端点数,可以使用 ST_Intersection 函数来计算交集,然后使用 ST_NumPoints 函数来计算交集中的点数。 以下是一个示例查询,演示如何计算两个图层相交的端点数: ``` SELECT ST_NumPoints(ST_Intersection(layer1.geometry, layer2.geometry)) AS intersection_points FROM layer1, layer2 WHERE ST_Intersects(layer1.geometry,

漕河渡槽Ⅳ标段_工程施工土建监理资料建筑监理工作规划方案报告.doc

漕河渡槽Ⅳ标段_工程施工土建监理资料建筑监理工作规划方案报告.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

编写一个函数,将double数组转换成一个三列显示的二维数组(用grouped方法实现传入列数作为参数)

以下是一个基于Python实现的函数,可将长度为n的double数组转换为k列的二维数组,其中k为传入的列数。如果n不是k的倍数,则最后一行的元素数可能少于k列。 ```python import math def convert_to_2d(arr, k): n = len(arr) rows = math.ceil(n / k) result = [[0] * k for _ in range(rows)] for i in range(n): row = i // k col = i % k result

紫黑暗夜星空商务创业计划书29.pptx

紫黑暗夜星空商务创业计划书29.pptx