使用cnn网络对一维序列进行预测,要求序列有20000条左右,pytorch实现
时间: 2023-12-06 17:45:45 浏览: 34
Pytorch实现TCN-Transformer的时间序列预测(完整源码和数据)
5星 · 资源好评率100%
以下是使用PyTorch实现CNN对一维序列进行预测的代码示例:
```python
import torch
import torch.nn as nn
class CNN1d(nn.Module):
def __init__(self):
super(CNN1d, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(8000, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = self.conv1(x)
x = torch.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = torch.relu(x)
x = self.pool2(x)
x = x.view(-1, 8000)
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
return x
# 定义数据集
class MyDataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, index):
x = self.data[index, :-1]
y = self.data[index, -1:]
return x, y
def __len__(self):
return len(self.data)
# 加载数据
data = torch.randn(20000, 101)
dataset = MyDataset(data)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=128, shuffle=True)
# 定义损失函数和优化器
model = CNN1d()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(100):
for i, (inputs, labels) in enumerate(dataloader):
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print('Epoch: {}, Loss: {}'.format(epoch+1, loss.item()))
```
这里使用了一个带有100个特征的随机数据集,每个样本包含100个特征和1个标签。模型使用了两个卷积层和两个池化层,最后经过两个全连接层进行预测。训练过程中使用MSE损失函数和Adam优化器。
阅读全文