for i=1:length(bfsk)-6 if bfsk(i)==1 if bfsk(i+1)==1 if bfsk(i+2)==1 if bfsk(i+3)==0 if bfsk(i+4)==0 if bfsk(i+5)==1 if bfsk(i+6)==0 break; end end end end end end end end k=1; for j=i:i+71 if i>length(bfsk)-72 break; end BCD2(k)=bfsk(j); k=k+1; End
时间: 2023-05-12 14:07:30 浏览: 151
这是一段 MATLAB 代码,它的作用是将一个二进制序列中特定的一段转换成 BCD 码。具体实现方法是,从二进制序列的第一个元素开始往后遍历,如果遇到符合条件的一段序列(即 1110010),就将其转换成 BCD 码并存储在 BCD2 数组中。最后返回 BCD2 数组。
至于具体的实现细节,需要根据具体的需求进行调整。
相关问题
BFSK的调制与解调matlab
BFSK (Binary Frequency Shift Keying) 是一种数字调制技术,它通过在两个固定频率之间切换来表示二进制数据0和1。在MATLAB中,可以使用信号处理工具箱来实现BFSK的调制和解调。
**调制过程**:
1. 首先,你需要创建二进制序列(如`data`),然后确定两个不同的载波频率(如`carrier_freq1`和`carrier_freq2`)。
2. 使用`freqshift`函数,将每个二进制位映射到对应的载波频率上,`modulated_signal = freqshift(data, carrier_freq1)`(0对应`carrier_freq1`,1对应`carrier_freq2`)。
3. 可以选择在信号上添加适当的幅度(例如正弦波)来形成实际发送的模拟信号。
```matlab
data = [0 1 0 1]; % 二进制序列
carrier_freq1 = 1e6; % 载波频率1
carrier_freq2 = 2e6; % 载波频率2
modulated_signal = freqshift(data, [carrier_freq1 carrier_freq2]);
simulated_signal = sin(carrier_freq1 * t); % 添加幅度,t是时间向量
modulated_signal = modulated_signal .* simulated_signal; % 乘以模拟信号
```
**解调过程**:
1. 接收到信号后,通常需要低通滤波以去除高频噪声,然后对信号取样。
2. 使用`findpeaks`或自定义算法寻找信号的频率变化点,这将指示二进制位的边界。
3. 根据频率跳变的方向判断每个样本属于哪个频率,从而恢复原始二进制数据。
```matlab
received_samples = ...; % 接收的样值
filtered_signal = lowpass_filter(received_samples);
peaks = findpeaks(filtered_signal); % 寻找频率变化点
decoded_data = zeros(size(data));
for i = 1:length(peaks)
if peaks(i) > peaks(i-1) % 判断频率上升还是下降
decoded_data(i) = 1;
else
decoded_data(i) = 0;
end
end
```
输入:待排列的全部圆的半径R集合,圆的总数n 输出:最小圆排列距离Vmin,最优排列方案Path 算法: 1. 令Vmin为一个理论上绝对足够长的距离, Path=[] 2. 令ANode=zeros(n+1,n), ANode(1,:)=1:n, ANode(n+1,:)=1 (最后一行记录X中已确定部分数量) 3. 根据ANode(:,1)的信息计算出AVal和ABound(利用代价函数)对应的值 4. 当ANode非空时循环 5. --令AVal中最小值下标为loc, 则令X=ANode(1:n,loc), k=ANode(n+1,loc) 6. --如果ABound(loc)小于Vmin 7. ----对X(k+1)={1,2,...,n}-{X(1),X(2),...,X(k)}进行循环 8. ------如果k+1小于n, 即X(1:(k+1))为非叶结点 9. --------令lb为由X的前k+1个部分信息利用代价函数计算出的ABound的值 10. --------若lb小于Vmin,则把[X;k+1]加入ANode,把X对应的当前价值加入AVal,把lb加入Abound 11. ------否则 12. --------计算X的当前价值,并确定是否更新Vmin和Path 13. --从ANode中删去第loc列,从AVal中删去第loc个元素,从ABound中删去第loc个元素,写出其对应的matlab程序
根据题意,我们可以使用分支限界法解决该问题,以下是对应的 Matlab 程序:
```matlab
function [Vmin, Path] = circle_arrangement(R)
n = length(R);
Vmin = Inf;
Path = [];
% 初始化 ANode, AVal, ABound
ANode = zeros(n+1, n);
ANode(1,:) = 1:n;
ANode(n+1,:) = 1;
AVal = Inf * ones(1, n);
AVal(1) = 0;
ABound = zeros(1, n);
for i = 1:n
ABound(1) = ABound(1) + 2 * R(i);
end
while ~isempty(ANode)
% 找到 AVal 中的最小值
[val, loc] = min(AVal);
X = ANode(1:n, loc);
k = ANode(n+1, loc);
% 如果 ABound(loc) 小于 Vmin,进行扩展
if ABound(loc) < Vmin
for i = setdiff(1:n, X(1:k))
if k < n
% 计算 lb
lb = ABound(loc) + 2 * R(i) + calc_bound(X, k+1, R);
if lb < Vmin
% 扩展节点
X(k+1) = i;
ANode(:, end+1) = [X; k+1];
AVal(end+1) = AVal(loc) + calc_dist(X(k), i, R);
ABound(end+1) = lb;
end
else
% 计算当前价值
val = AVal(loc) + calc_dist(X(k), i, R) + R(i);
if val < Vmin
% 更新 Vmin 和 Path
Vmin = val;
Path = X;
Path(k+1) = i;
end
end
end
end
% 从 ANode, AVal, ABound 中删除 loc 对应的列/元素
ANode(:, loc) = [];
AVal(loc) = [];
ABound(loc) = [];
end
end
% 计算代价函数
function bound = calc_bound(X, k, R)
bound = 0;
for i = 1:k
for j = i+1:k
bound = bound + calc_dist(X(i), X(j), R);
end
end
end
% 计算两圆心之间的距离
function dist = calc_dist(i, j, R)
dist = sqrt((R(i) + R(j))^2 - (R(i) - R(j))^2);
end
```
具体来说,我们首先初始化 ANode、AVal 和 ABound。其中 ANode 是一个 n+1 行 m 列的矩阵,第一行到第 n 行分别记录了当前排列下每个圆的下标,第 n+1 行记录了当前已确定的圆的数量。AVal 是一个长度为 m 的数组,记录了每个节点的当前代价函数值。ABound 是一个长度为 m 的数组,记录了每个节点的下界(即代价函数的下界)。
我们使用类似于 BFS 的方式进行搜索。每次从 AVal 中找到最小值对应的节点,进行扩展。如果该节点的下界小于当前的 Vmin,我们对其进行扩展。扩展时,我们枚举下一个圆的下标,如果当前排列不是叶节点,我们计算该节点的下界 lb,如果 lb 小于 Vmin,就将该节点加入到 ANode 中,并更新对应的 AVal 和 ABound。如果当前排列是叶节点,我们计算该排列的代价函数值,如果小于 Vmin,就更新 Vmin 和 Path。最后从 ANode、AVal、ABound 中删除扩展过的节点即可。
其中,calc_bound 函数用于计算 X 的前 k 个圆的下标对应的排列的下界;calc_dist 函数用于计算第 i 个圆和第 j 个圆之间的距离。
阅读全文