history = model.fit( train_generator, steps_per_epoch=50, epochs=50, validation_data=validation_generator, validation_steps=20, callbacks=[checkpoint])
时间: 2023-06-13 21:07:52 浏览: 184
这段代码是使用Keras中的fit函数训练模型。其中train_generator和validation_generator是训练和验证数据集的生成器,steps_per_epoch和validation_steps分别是训练和验证数据集的迭代次数。callbacks参数是一个回调函数列表,其中checkpoint是一个自定义的回调函数,用于在训练过程中保存模型的权重。epochs参数是训练的轮数。这段代码的作用是训练模型并保存每个epoch的权重。
相关问题
history = model.fit(train_generator, epochs=10, steps_per_epoch=100, validation_data=val_generator, validation_steps=50)
这段代码是使用Keras中的模型训练函数fit()来训练模型。具体来说,它使用了一个训练数据生成器train_generator和一个验证数据生成器val_generator来训练模型。训练过程会进行10个epoch(即训练整个训练集的次数),每个epoch会处理100个batch(即每个batch包含的样本数),验证集会在每个epoch结束时被用来评估模型的性能,每个epoch会处理50个验证集的batch。训练过程的历史记录会被保存在history变量中。
def train_model(self, model, epochs, train_generator, steps_per_epoch, validation_generator, validation_steps, model_url, is_load_model=False): # 载入模型 if is_load_model and os.path.exists(model_url): model = load_model(model_url) history_ft = model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=validation_generator, validation_steps=validation_steps) # 模型保存 model.save(model_url, overwrite=True) return history_ft
这段代码看起来是在训练一个深度学习模型,使用了一个训练集和一个验证集,并且保存了训练好的模型。其中,参数`model`是所使用的模型,`epochs`是训练的轮数,`train_generator`是训练数据的生成器,`steps_per_epoch`是每轮训练的步数,`validation_generator`是验证数据的生成器,`validation_steps`是每轮验证的步数,`model_url`是保存模型的路径,`is_load_model`表示是否需要从保存的模型中加载。函数的返回值是训练历史。
阅读全文