ddpg代码pytorch实现
时间: 2023-12-11 10:31:53 浏览: 96
以下是使用PyTorch实现DDPG算法的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import gym
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer1 = nn.Linear(state_dim, 400)
self.layer2 = nn.Linear(400, 300)
self.layer3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.max_action * torch.tanh(self.layer3(x))
return x
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.layer1 = nn.Linear(state_dim + action_dim,400)
self.layer2 = nn.Linear(400, 300)
self.layer3 = nn.Linear(300, 1)
def forward(self, x, u):
xu = torch.cat([x, u], 1)
x = F.relu(self.layer1(xu))
x = F.relu(self.layer2(x))
x = self.layer3(x)
return x
# 定义DDPG算法
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.max_action = max_action
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=64, discount=0.99, tau=0.001):
for it in range(iterations):
# 从缓存中随机采样一批数据
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = replay_buffer.sample(batch_size)
state = torch.FloatTensor(batch_states).to(device)
next_state = torch.FloatTensor(batch_next_states).to(device)
action = torch.FloatTensor(batch_actions).to(device)
reward = torch.FloatTensor(batch_rewards).to(device)
done = torch.FloatTensor(batch_dones).to(device)
# 计算Q值
Q = self.critic(state, action)
next_action = self.actor_target(next_state)
next_Q = self.critic_target(next_state, next_action.detach())
target_Q = reward + (1 - done) * discount * next_Q
# 计算Critic损失并更新网络
critic_loss = F.mse_loss(Q, target_Q.detach())
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 计算Actor损失并更新网络
actor_loss = -self.critic(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 更新目标网络
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# 定义经验回放缓存
class ReplayBuffer(object):
def __init__(self, max_size=1000000):
self.storage = []
self.max_size = max_size
self.ptr = 0
def add(self, state, next_state, action, reward, done):
data = (state, next_state, action, reward, done)
if len(self.storage) == self.max_size:
self.storage[int(self.ptr)] = data
self.ptr = (self.ptr + 1) % self.max_size
else:
self.storage.append(data)
def sample(self, batch_size):
ind = np.random.randint(0, len(self.storage), size=batch_size)
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = [], [], [], [], []
for i in ind:
state, next_state, action, reward, done = self.storage[i]
batch_states.append(np.array(state, copy=False))
batch_next_states.append(np.array(next_state, copy=False))
batch_actions.append(np.array(action, copy=False))
batch_rewards.append(np.array(reward, copy=False))
batch_dones.append(np.array(done, copy=False))
return np.array(batch_states), np.array(batch_next_states), np.array(batch_actions), np.array(batch_rewards).reshape(-1, 1), np.array(batch_dones).reshape(-1, 1)
# 定义超参数
env_name = "MountainCarContinuous-v0"
seed = 0
start_timesteps = 1e4
max_timesteps = 5e5
expl_noise = 0.1
batch_size = 64
discount = 0.99
tau = 0.001
policy_noise = 0.2
noise_clip = 0.5
policy_freq = 2
# 创建环境
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# 设置随机种子
env.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
# 创建DDPG对象
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ddpg = DDPG(state_dim, action_dim, max_action)
# 创建经验回放缓存
replay_buffer = ReplayBuffer()
# 初始化状态和分数
state, done, score = env.reset(), False, 0
# 开始训练
for t in range(int(max_timesteps)):
if t < start_timesteps:
action = env.action_space.sample()
else:
action = (
ddpg.select_action(np.array(state))
+ np.random.normal(0, max_action * expl_noise, size=action_dim)
).clip(-max_action, max_action)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, next_state, action, reward, done)
state = next_state
score += reward
if done:
state, done, score = env.reset(), False, 0
if t >= start_timesteps:
ddpg.train(replay_buffer, batch_size, discount, tau)
if t % 10000 == 0:
print("Timestep: {} Score: {}".format(t, score))
# 关闭环境
env.close()
```
阅读全文