def updateStack(self, blocks, indexes, overlapping=0, block_size=64): """ Update the self.stack with the divided volumes. @blocks (list) The divided volumes. @indexes (list) The list containing index numbers corresponding to the blocks. @overlapping (integer) A overlapping pixel size. Should be the same value used in the block_separator function. @block_size (integer) A block size determining the divided volume size. Should be the same value used in the block_separator function. """ self.checkStack() for block, index in zip(blocks, indexes): self.stack[index[0]:index[0]+block_size, index[1]:index[1]+block_size, index[2]:index[2]+block_size] = block[overlapping:-overlapping, overlapping:-overlapping, overlapping:-overlapping] return请完整详细解释每一行代码的意思

时间: 2023-06-04 10:03:39 浏览: 69
这段代码是一个函数,名为updateStack,其功能是将分块后的体素更新至当前的空间中。它包含了四个参数: 1. blocks:分块后的体素,即被分成若干小块的三维立方体体素数据。 2. indexes:代表每个小块在原来的大数据空间中的位置和大小。 3. overlapping:代表每个小块在更新时需要进行重叠的像素大小(因为分块后的小块之间可能存在重叠)。 4. block_size:代表每个小块的大小。 函数的执行过程如下: - 调用checkStack()函数,检查当前的空间是否已经被初始化。 - 遍历每个小块和其对应的index,对于每个小块,根据对应的index在空间中定位并更新其像素值。 - 最后返回更新后的空间。 具体来说,第4行代码用zip函数将blocks和indexes的对应小块和index打包成元素为元组的列表,以进行并列遍历。第6行代码使用numpy库的数组切片操作[],从当前的空间self.stack上取出对应小块部分,并用等号=将其赋值为对应小块的像素值。切片操作[起始位置:终止位置]代表了numpy数组的一个视图,即将数组分隔成指定位置两侧的两部分,而不进行复制操作。切片操作中的起始位置和终止位置是左闭右开的区间表示法,代表从第一个位置开始到第二个位置结束,但不包括第二个位置。 因此,这段代码的作用是根据传入的分块后的体素和位置信息,更新当前的空间。
相关问题

def updateStack(self, blocks, indexes, overlapping=0, block_size=64): """ Update the self.stack with the divided volumes. @blocks (list) The divided volumes. @indexes (list) The list containing index numbers corresponding to the blocks. @overlapping (integer) A overlapping pixel size. Should be the same value used in the block_separator function. @block_size (integer) A block size determining the divided volume size. Should be the same value used in the block_separator function. """ self.checkStack() for block, index in zip(blocks, indexes): self.stack[index[0]:index[0]+block_size, index[1]:index[1]+block_size, index[2]:index[2]+block_size] = block[overlapping:-overlapping, overlapping:-overlapping, overlapping:-overlapping] return请详细解释每一行代码的意思

这段代码是一个函数,函数名为"updateStack",用来更新另一个变量"self.stack",将输入的被划分成若干个块的体积(即"blocks")按照对应的索引(即"indexes")拼接在一起,并返回更新后的"self.stack"。 具体每一行代码的含义如下: 1. def updateStack(self, blocks, indexes, overlapping=0, block_size=64): 这一行是函数的定义,其中第一个参数"self"表示该函数是属于某个类(应该是一个Python类)里的方法,其余三个参数分别是用来传入该函数需要的被划分成若干个块的体积、对应的索引,并且可以指定重叠像素大小和块大小的默认值是64。 2. self.checkStack() 这一行调用类中的"checkStack"方法,用来检查"self.stack"是否存在,如果不存在则创建一个空数组。 3. for block, index in zip(blocks, indexes): 这一行使用Python中的"zip"函数将"blocks"和"indexes"中的元素一一对应起来,并依次传递给"block"和"index"两个变量。 4. self.stack[index[0]:index[0] block_size, index[1]:index[1] block_size, index[2]:index[2] block_size] = block[overlapping:-overlapping, overlapping:-overlapping, overlapping:-overlapping] 这一行是该函数的主要逻辑,用来将"block"按照"index"对应的位置拼接起来。具体说明如下: - [index[0]:index[0]+block_size, index[1]:index[1]+block_size, index[2]:index[2]+block_size] 表示对应的位置范围,用来指定拼接后的体积大小。 - "= block[overlapping:-overlapping, overlapping:-overlapping, overlapping:-overlapping]" 表示拼接后赋值给该位置。这里使用了Python中的切片操作,去掉每个块的边缘"overlapping"个像素,避免拼接时出现重复部分。 5. return 这一行表示该函数的返回值为拼接完成后的更新后的"self.stack"。

def filterNormalization(self, block_size=64, all_at_once = False): """ Normalize signal intensity. @block_size (integer) A block size determining the divided volume size. This argument is passed to the block_separator function. @all_at_once (bool) A flag determining all-at-onec processing. This argument is passed to the block_separator function. """ print("Intensity normalization") if self.peak_air == None: raise Exception('Call the calculateNormalizationParam in ahead.') maxid = [self.peak_air, self.peak_soil] maxid = [i-self.hist_x[0] for i in maxid] plt.figure() plt.plot(self.hist_x, self.hist_y) plt.plot(self.hist_x[maxid], self.hist_y[maxid],'ro') plt.xlabel('intensity') plt.ylabel('count') plt.pause(.01) i_block = self.block_separator(overlapping = 1, block_size = block_size, all_at_once = all_at_once) for blocks, indexes in i_block: blocks = tqdm_multiprocessing(functools.partial(normalizeIntensity, peak_air=self.peak_air, peak_soil=self.peak_soil), blocks) self.updateStack(blocks, indexes, overlapping = 1, block_size = block_size) return请完整详细解释每一行的代码意思

def filterNormalization(self, block_size=64, all_at_once=False): """ Normalize signal intensity. @block_size (integer): A block size determining the divided volume size. This argument is passed to the block_separator function. @all_at_once (bool): A flag determining all-at-once processing. This argument is passed to the block_separator function. """ # 打印字符串 print("Intensity normalization") # 如果没有设置峰值,抛出异常 if self.peak_air == None: raise Exception('Call the calculateNormalizationParam in ahead.') # 设置峰值 maxid = [self.peak_air, self.peak_soil] maxid = [i-self.hist_x[0] for i in maxid] # 绘图 plt.figure() plt.plot(self.hist_x, self.hist_y) plt.plot(self.hist_x[maxid], self.hist_y[maxid],'ro') plt.xlabel('intensity') plt.ylabel('count') plt.pause(.01) # 将数据分块处理 i_block = self.block_separator(overlapping=1, block_size=block_size, all_at_once=all_at_once) # 对分块数据进行处理 for blocks, indexes in i_block: # 对分块数据进行处理 blocks = tqdm_multiprocessing(functools.partial(normalizeIntensity, peak_air=self.peak_air, peak_soil=self.peak_soil), blocks) # 更新数据 self.updateStack(blocks, indexes, overlapping=1, block_size=block_size) # 返回结果 return

相关推荐

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

为以下的每句代码做注释:class ResNet(nn.Module): def init(self, block, blocks_num, num_classes=1000, include_top=True): super(ResNet, self).init() self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x

最新推荐

recommend-type

java-ssm+vue电影推荐系统实现源码(项目源码-说明文档)

基于协同过滤算法的电影推荐系统的部署与应用,将对首页,个人中心,用户管理,电影分类管理,免费电影管理,付费电影管理,电影订单管理,我的电影管理,电影论坛,系统管理等功能进行管理 项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7+ 后端技术:ssm 前端技术:Vue 关键技术:springboot、SSM、vue、MYSQL、MAVEN 数据库工具:Navicat、SQLyog
recommend-type

12345688882222

12345688882222
recommend-type

4-3_Business_DK_BLUE_2017_09-CL-20180524MTAX.potx

微软演示材料
recommend-type

java基于ssm+jsp北关村基本办公管理系统源码 带毕业论文+PPT

1、开发环境:ssm框架;内含Mysql数据库;JSP技术 2、需要项目部署的可以私信 3、项目代码都经过严格调试,代码没有任何bug! 4、该资源包括项目的全部源码,下载可以直接使用! 5、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 6、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。
recommend-type

WebLogic集群配置与管理实战指南

"Weblogic 集群管理涵盖了WebLogic服务器的配置、管理和监控,包括Adminserver、proxyserver、server1和server2等组件的启动与停止,以及Web发布、JDBC数据源配置等内容。" 在WebLogic服务器管理中,一个核心概念是“域”,它是一个逻辑单元,包含了所有需要一起管理的WebLogic实例和服务。域内有两类服务器:管理服务器(Adminserver)和受管服务器。管理服务器负责整个域的配置和监控,而受管服务器则执行实际的应用服务。要访问和管理这些服务器,可以使用WebLogic管理控制台,这是一个基于Web的界面,用于查看和修改运行时对象和配置对象。 启动WebLogic服务器时,可能遇到错误消息,需要根据提示进行解决。管理服务器可以通过Start菜单、Windows服务或者命令行启动。受管服务器的加入、启动和停止也有相应的步骤,包括从命令行通过脚本操作或在管理控制台中进行。对于跨机器的管理操作,需要考虑网络配置和权限设置。 在配置WebLogic服务器和集群时,首先要理解管理服务器的角色,它可以是配置服务器或监视服务器。动态配置允许在运行时添加和移除服务器,集群配置则涉及到服务器的负载均衡和故障转移策略。新建域的过程涉及多个配置任务,如服务器和集群的设置。 监控WebLogic域是确保服务稳定的关键。可以监控服务器状态、性能指标、集群数据、安全性、JMS、JTA等。此外,还能对JDBC连接池进行性能监控,确保数据库连接的高效使用。 日志管理是排查问题的重要工具。WebLogic提供日志子系统,包括不同级别的日志文件、启动日志、客户端日志等。消息的严重级别和调试功能有助于定位问题,而日志过滤器则能定制查看特定信息。 应用分发是WebLogic集群中的重要环节,支持动态分发以适应变化的需求。可以启用或禁用自动分发,动态卸载或重新分发应用,以满足灵活性和可用性的要求。 最后,配置WebLogic的Web组件涉及HTTP参数、监听端口以及Web应用的部署。这些设置直接影响到Web服务的性能和可用性。 WebLogic集群管理是一门涉及广泛的技术学科,涵盖服务器管理、集群配置、监控、日志管理和应用分发等多个方面,对于构建和维护高性能的企业级应用环境至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python列表操作大全:你不能错过的10大关键技巧

![Python列表操作大全:你不能错过的10大关键技巧](https://blog.finxter.com/wp-content/uploads/2020/06/graphic-1024x576.jpg) # 1. Python列表基础介绍 Python列表是Python中最基本的数据结构之一,它是一个可变的序列类型,可以容纳各种数据类型,如整数、浮点数、字符串、甚至其他列表等。列表用方括号`[]`定义,元素之间用逗号分隔。例如: ```python fruits = ["apple", "banana", "cherry"] ``` 列表提供了丰富的操作方法,通过索引可以访问列表中的
recommend-type

编写完整java程序计算"龟兔赛跑"的结果,龟兔赛跑的起点到终点的距离为800米,乌龟的速度为1米/1000毫秒,兔子的速度为1.2米/1000毫秒,等兔子跑到第600米时选择休息120000毫秒,请编写多线程程序计算龟兔赛跑的结果。

```java public class TortoiseAndHareRace { private static final int TOTAL_DISTANCE = 800; private static final int TORTOISE_SPEED = 1 * 1000; // 1米/1000毫秒 private static final int RABBIT_SPEED = 1.2 * 1000; // 1.2米/1000毫秒 private static final int REST_TIME = 120000; // 兔子休息时间(毫秒)
recommend-type

AIX5.3上安装Weblogic 9.2详细步骤

“Weblogic+AIX5.3安装教程” 在AIX 5.3操作系统上安装WebLogic Server是一项关键的任务,因为WebLogic是Oracle提供的一个强大且广泛使用的Java应用服务器,用于部署和管理企业级服务。这个过程对于初学者尤其有帮助,因为它详细介绍了每个步骤。以下是安装WebLogic Server 9.2中文版与AIX 5.3系统配合使用的详细步骤: 1. **硬件要求**: 硬件配置应满足WebLogic Server的基本需求,例如至少44p170aix5.3的处理器和足够的内存。 2. **软件下载**: - **JRE**:首先需要安装Java运行环境,可以从IBM开发者网站下载适用于AIX 5.3的JRE,链接为http://www.ibm.com/developerworks/java/jdk/aix/service.html。 - **WebLogic Server**:下载WebLogic Server 9.2中文版,可从Bea(现已被Oracle收购)的官方网站获取,如http://commerce.bea.com/showallversions.jsp?family=WLSCH。 3. **安装JDK**: - 首先,解压并安装JDK。在AIX上,通常将JRE安装在`/usr/`目录下,例如 `/usr/java14`, `/usr/java5`, 或 `/usr/java5_64`。 - 安装完成后,更新`/etc/environment`文件中的`PATH`变量,确保JRE可被系统识别,并执行`source /etc/environment`使更改生效。 - 在安装过程中,确保接受许可协议(设置为“yes”)。 4. **安装WebLogic Server**: - 由于中文环境下可能出现问题,建议在英文环境中安装。设置环境变量`LANG=US`,然后运行安装命令,如:`export LANG=US; java -jar -Xmx500m server921_ccjk_generic.jar`。 - 安装路径选择`/opt`,确保在安装前有足够空间,如遇到磁盘空间不足,可以使用`chfs`命令扩展`/opt`, `/usr/`, 和 `/tmp`分区。 5. **检查和扩容磁盘空间**: - 在开始安装前,使用`chfs -a size=XXXXM /partition_name`命令检查并扩展所需分区的大小,例如:`chfs -a size=4000M /usr`, `chfs -a size=5000M /opt`, 和 `chfs -a size=1000M /tmp`。 6. **启动设置**: - 安装完成后,为了方便日后自动启动WebLogic Server,需要设置其开机启动。这通常涉及到修改系统服务配置文件或者使用特定工具来管理启动脚本。 7. **确认JDK版本**: 在安装JDK前,通过`java -version`命令检查已安装的JDK版本。例如,可能看到的版本信息是“Java 1.5.0”。 注意,以上步骤是基于描述中给出的版本和环境,实际操作时请根据当前的WebLogic Server和AIX版本进行适应性调整。在安装过程中,务必遵循Oracle或IBM提供的官方文档,以获取最新的安装指南和技术支持。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依