wine_data=pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv')
时间: 2023-08-26 08:15:43 浏览: 116
这段代码是使用pandas库中的read_csv函数读取一个csv文件,文件路径为'C:\Users\20778\Desktop\batch1(xin).csv',并将读取的数据存储在名为wine_data的变量中。这个csv文件可能包含有关葡萄酒的数据,例如酒的名称、品种、产地、酒精含量、评分等信息。读取csv文件后,可以使用pandas库中的各种函数来处理和分析这些数据。
相关问题
wine_data=pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv') data=wine_data.iloc[:,1:] target=wine_data.iloc[:,0] data1=wine_data.iloc[:,1:333] data2=wine_data.iloc[:,333:] y_known = data1=wine_data.iloc[:,1:333] y_unknown = data2=wine_data.iloc[:,333:] x_train, x_test, y_train, y_test = train_test_split(data1, y_known, test_size=0.2, random_state=1) model = Sequential() model.add(Dense(64, activation='relu', input_dim=x_train.shape[1])) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=300)错误在哪
这段代码有一个错误:在定义y_known时,代码重复赋值了y_known和data1,导致y_known的取值与实际意图不符。下面是修改后的代码:
```
wine_data = pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv')
data = wine_data.iloc[:,1:]
target = wine_data.iloc[:,0]
data1 = wine_data.iloc[:,1:333]
data2 = wine_data.iloc[:,333:]
y_known = wine_data.iloc[:,0] # 修改此行代码
y_unknown = data2
x_train, x_test, y_train, y_test = train_test_split(data1, y_known, test_size=0.2, random_state=1)
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=x_train.shape[1]))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=300)
```
修改后的代码将y_known的取值设为全部数据的第0列,即目标变量列。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文