下面代码转化为paddle2.2.2代码 : gt_batch_list.append(gt_pack) input_batch = np.concatenate(input_batch_list, axis=0) gt_batch = np.concatenate(gt_batch_list, axis=0) in_data = torch.from_numpy(input_batch.copy()).permute(0,3,1,2).cuda() gt_data = torch.from_numpy(gt_batch.copy()).permute(0,3,1,2).cuda()
时间: 2024-02-24 16:57:53 浏览: 139
s.cr);
}
} else {
printf("Solution not found\n");
}
free(queue);
free(visited);
import paddle
import numpy as np
gt_batch_list = []
input_batch_list = []
# 假设 input_batch_list 和 gt_batch_list 已 return 0;
}
```
以上是一个完整的C语言程序,可以在控制台中运行,并输出经赋值完成
gt_pack = paddle.to_tensor(gt_batch_list)
input_batch = np.concatenate(input_batch_list, axis=0)
gt解题过程。注意,由于状态空间较小,使用广度优先搜索可以找到最优解,但_batch = np.concatenate(gt_batch_list, axis=0)
in_data = paddle.to_tensor(input_batch.copy()).transpose((0, 3, 1, 2)).astype("float32")
gt_data = paddle.to_tensor(gt_batch.copy()).transpose((0, 3, 对于更大的状态空间,可能需要使用其他搜索算法或优化方法,例如A*算法或双向搜索。
相关问题
请在这个DeepCFD的网络添加attention机制,并给出示例代码:import paddle import paddle.nn as nn class Attention(nn.Layer): def __init__(self, input_size, hidden_size): super(Attention, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.attn = nn.Linear(self.input_size + self.hidden_size, 1) self.softmax = nn.Softmax(axis=1) def forward(self, input, hidden): max_len = input.shape[0] attn_energies = paddle.zeros([max_len, 1]) for i in range(max_len): attn_energies[i] = self.score(input[i], hidden) attn_weights = self.softmax(attn_energies) context = paddle.sum(attn_weights * input, axis=0) return context.unsqueeze(0) def score(self, input, hidden): energy = self.attn(paddle.concat([input, hidden], axis=1)) return energy class DeepCFD(nn.Layer): def __init__(self, input_size, hidden_size, output_size): super(DeepCFD, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, batch_first=True) self.attention = Attention(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, (hidden, cell) = self.lstm(input) context = self.attention(output, hidden[-1]) output = self.fc(context) return output
好的,下面是添加了Attention机制的DeepCFD网络的示例代码:
import paddle
import paddle.nn as nn
class Attention(nn.Layer):
def __init__(self, input_size, hidden_size):
super(Attention, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.attn = nn.Linear(self.input_size + self.hidden_size, 1)
self.softmax = nn.Softmax(axis=1)
def forward(self, input, hidden):
max_len = input.shape[1]
attn_energies = paddle.zeros([input.shape[0], max_len, 1])
for i in range(max_len):
attn_energies[:, i] = self.score(input[:, i, :], hidden)
attn_weights = self.softmax(attn_energies)
context = paddle.sum(attn_weights * input, axis=1)
return context
def score(self, input, hidden):
energy = self.attn(paddle.concat([input, hidden], axis=1))
return energy
class DeepCFD(nn.Layer):
def __init__(self, input_size, hidden_size, output_size):
super(DeepCFD, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, batch_first=True)
self.attention = Attention(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, input):
output, (hidden, cell) = self.lstm(input)
context = self.attention(output, hidden[-1])
output = self.fc(context)
return output
在这个示例代码中,我们将Attention机制应用到了LSTM的输出上。在Attention中,我们计算了每个时间步的注意力能量,然后使用softmax函数计算注意力权重。然后,我们将这些权重与LSTM输出相乘并求和,得到上下文向量作为Attention机制的输出。
在DeepCFD中,我们使用了两层LSTM,然后将LSTM输出和最后一个时刻的隐藏状态作为Attention机制的输入。最后,我们将Attention机制的输出传递到一个全连接层中,得到最终的输出。
下面代码转化为paddle2.2.2代码 :from __future__ import division import os, time, scipy.io import torch import torch.nn as nn import torch.optim as optim import numpy as np import glob import cv2 import argparse from PIL import Image from skimage.measure import compare_psnr,compare_ssim from tensorboardX import SummaryWriter from models import RViDeNet from utils import * parser = argparse.ArgumentParser(description='Pretrain denoising model') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs') parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size') parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) save_dir = './pretrain_model' if not os.path.isdir(save_dir): os.makedirs(save_dir) gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff') gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff') gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff') gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff') gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4 ps = args.patch_size # patch size for training batch_size = args.batch_size # batch size for training
把原始代码转换为PaddlePaddle 2.2.2 的代码如下:
```python
import os
import time
import argparse
import glob
import cv2
import numpy as np
from PIL import Image
from skimage.measure import compare_psnr, compare_ssim
from tensorboardX import SummaryWriter
from models import RViDeNet
from utils import *
import paddle
from paddle import nn
from paddle.optimizer import optim
paddle.set_device('gpu')
parser = argparse.ArgumentParser(description='Pretrain denoising model')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size')
args = parser.parse_args()
save_dir = './pretrain_model'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff')
gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff')
gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff')
gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff')
gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4
ps = args.patch_size # patch size for training
batch_size = args.batch_size # batch size for training
num_epochs = args.num_epochs
train_dataset = DatasetDenoising(gt_paths, ps=ps)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
model = RViDeNet()
model.train()
optimizer = optim.Adam(learning_rate=1e-4, parameters=model.parameters())
writer = SummaryWriter()
for epoch in range(num_epochs):
epoch_start_time = time.time()
epoch_loss = 0
for i, (noisy_patches, gt_patches) in enumerate(train_loader()):
noisy_patches = paddle.to_tensor(noisy_patches)
gt_patches = paddle.to_tensor(gt_patches)
output = model(noisy_patches)
loss = nn.functional.mse_loss(output, gt_patches)
optimizer.clear_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
epoch_time = time.time() - epoch_start_time
epoch_loss = epoch_loss / len(train_loader)
print("Epoch [{}/{}] Loss: {:.5f} [{:.2f}s]".format(epoch + 1, num_epochs, epoch_loss, epoch_time))
writer.add_scalar("Loss/train", epoch_loss, epoch + 1)
if (epoch + 1) % 10 == 0:
model_path = os.path.join(save_dir, 'RViDeNet_epoch{}.pdparams'.format(epoch + 1))
paddle.save(model.state_dict(), model_path)
print("Saving model to: {}".format(model_path))
writer.close()
```
阅读全文