下面代码转化为paddle2.2.2代码 :log_dir = './logs/pretrain' if not os.path.isdir(log_dir): os.makedirs(log_dir) writer = SummaryWriter(log_dir) learning_rate = 1e-4 isp = torch.load('isp/ISP_CNN.pth').cuda() for k,v in isp.named_parameters(): v.requires_grad=False predenoiser = torch.load('./predenoising/PreDenoising.pth') for k,v in predenoiser.named_parameters(): v.requires_grad=False denoiser = RViDeNet(predenoiser=predenoiser).cuda() initial_epoch = findLastCheckpoint(save_dir=save_dir) if initial_epoch > 0: print('resuming by loading epoch %03d' % initial_epoch) denoiser = torch.load(os.path.join(save_dir, 'model_epoch%d.pth' % initial_epoch)) initial_epoch += 1 opt = optim.Adam(denoiser.parameters(), lr = learning_rate) # Raw data takes long time to load. Keep them in memory after loaded. gt_raws = [None] * len(gt_paths) iso_list = [1600,3200,6400,12800,25600] a_list = [3.513262,6.955588,13.486051,26.585953,52.032536] g_noise_var_list = [11.917691,38.117816,130.818508,484.539790,1819.818657] if initial_epoch==0: step=0 else: step = (initial_epoch-1)*int(len(gt_paths)/batch_size) temporal_frames_num = 3
时间: 2024-02-24 22:57:19 浏览: 80
paddel OCR git clone https://github.com/PaddlePaddle/Paddle.git
5星 · 资源好评率100%
```
import os
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.io import DataLoader
from paddle.vision.datasets import ImageFolder
from paddle.optimizer import Adam
from paddle.utils.tensorboard import SummaryWriter
log_dir = './logs/pretrain'
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir)
learning_rate = 1e-4
isp = paddle.load('isp/ISP_CNN.pdparams')
for k, v in isp.named_parameters():
v.stop_gradient = True
predenoiser = paddle.load('./predenoising/PreDenoising.pdparams')
for k, v in predenoiser.named_parameters():
v.stop_gradient = True
denoiser = RViDeNet(predenoiser=predenoiser)
initial_epoch = findLastCheckpoint(save_dir=save_dir)
if initial_epoch > 0:
print('resuming by loading epoch %03d' % initial_epoch)
denoiser.set_state_dict(paddle.load(os.path.join(save_dir, 'model_epoch%d.pdparams' % initial_epoch)))
initial_epoch += 1
opt = Adam(denoiser.parameters(), lr=learning_rate)
# Raw data takes long time to load. Keep them in memory after loaded.
gt_raws = [None] * len(gt_paths)
iso_list = [1600, 3200, 6400, 12800, 25600]
a_list = [3.513262, 6.955588, 13.486051, 26.585953, 52.032536]
g_noise_var_list = [11.917691, 38.117816, 130.818508, 484.539790, 1819.818657]
if initial_epoch == 0:
step = 0
else:
step = (initial_epoch - 1) * int(len(gt_paths) / batch_size)
temporal_frames_num = 3
```
阅读全文