void timer(void)//T/C0定时计数器的初始化配置 { TCCR0 = 0x0B;//ctc模式 64分频 TCNT0 = 0x00; OCR0 = 62; TIMSK|= 0x02;//使能T/C0比较比配中断 }

时间: 2023-11-18 18:03:45 浏览: 35
这段代码是用来实现一个定时器的初始化配置,使用了 ATmega16/32 的 Timer/Counter 0 (T/C0) 模块。具体来说,它配置了 T/C0 为 CTC (Clear Timer on Compare Match) 模式,使用了 64 分频器(prescaler),并设置了比较值 OCR0 为 62。最后,它使能了 T/C0 的比较匹配中断。这个定时器的工作方式是:每当 T/C0 的计数器值与 OCR0 相等时,就会触发一次比较匹配中断。所以,可以通过调整 OCR0 的值来改变定时器的计数周期。
相关问题

/* * T1_T2_T3_2023_1.c * * 创建: 2023/5/30 22:49:53 * 作者 : XY */ #include <avr/io.h> #include <avr/interrupt.h> #include <avr/sleep.h> void device_init(void) { DDRD |= 0xf0;端口 &= 0x0f;DDRB |= (_BV(PB4)|_BV(PB6));DDRE |= _BV(PE7);} void timer1_init(void) { TCCR1B = 0x00; //stop OCR1AH = 0x3D; //TOP of T1 OCR1AL = 0x08;OCR1BH = 0x3D;OCR1BL = 0x08;TCCR1A = 0x10;TCCR1C = 0x00;TCCR1B = 0x0B;启动计时器 } void timer2_init(void) { TCCR2B = 0x00; //stop ASSR = 0x20; //设置异步模式 OCR2A = 0x80;TCCR2A = 0x42;TCCR2B = 0x06;start } void timer3_init(void) { TCCR3B = 0x00; //stop OCR3AH = 0x3D;OCR3AL = 0x08;TCCR3A = 0x00;TCCR3C = 0x00;TCCR3B = 0x0B;start Timer } ISR(TIMER3_COMPA_vect) { PORTE ^= _BV(PE7); } int main(void) { device_init(); timer1_init(); timer2_init(); timer3_init();TIMSK3 = 0x02;SEI();而 (1) { SMCR |= (0x00<<SM0); sleep_mode(); } }根据程序中 T1、T2、T3 的配置参数(包括工作模式、分频系数、初值),通过更改SMCR |= (0x00<<SM0)为SMCR |= (0x03<<SM0)和SMCR |= (0x02<<SM0)来分析三个定时器驱动 LED 灯的方式有何区别

根据程序中的配置参数,T1、T2、T3 分别使用不同的定时器模式和分频系数驱动 LED 灯。具体来说: - T1 使用 CTC 模式(TCCR1A = 0x10)和 64 分频(TCCR1B = 0x0B),计时器初值为 15624(OCR1A = 0x3D08),即每 1 秒产生一个中断,LED 灯的亮灭由程序控制。 - T2 使用 CTC 模式(TCCR2A = 0x42)和 1024 分频(TCCR2B = 0x06),计时器初值为 128(OCR2A = 0x80),即每 8 毫秒产生一个中断,LED 灯的亮灭由程序控制。 - T3 使用 CTC 模式(TCCR3A = 0x00)和 64 分频(TCCR3B = 0x0B),计时器初值为 15624(OCR3A = 0x3D08),即每 1 秒产生一个中断,LED 灯的亮灭由定时器的输出比较通道 A 控制,每次中断时将 PE7 引脚取反,从而控制 LED 灯的亮灭。 当更改 SMCR 寄存器的值为 SMCR |= (0x03<<SM0)时,MCU 进入 Power-down 模式,此时所有定时器停止工作,LED 灯也将熄灭。当更改 SMCR 寄存器的值为 SMCR |= (0x02<<SM0)时,MCU 进入 Idle 模式,此时仅有 T1 和 T3 继续工作,LED 灯的亮灭由定时器控制,而 T2 停止工作,LED 灯将保持上一次的状态。

/* * T1_T2_T3_2023_1.c * * Created: 2023/5/30 22:49:53 * Author : XY */ #include <avr/io.h> #include <avr/interrupt.h> #include <avr/sleep.h> void device_init(void) { DDRD |= 0xf0; PORTD &= 0x0f; DDRB |= (_BV(PB4)|_BV(PB6)); DDRE |= _BV(PE7); } void timer1_init(void) { TCCR1B = 0x00; //stop OCR1AH = 0x3D; //TOP of T1 OCR1AL = 0x08; OCR1BH = 0x3D; OCR1BL = 0x08; TCCR1A = 0x10; TCCR1C = 0x00; TCCR1B = 0x0B; //start Timer } void timer2_init(void) { TCCR2B = 0x00; //stop ASSR = 0x20; //set async mode OCR2A = 0x80; TCCR2A = 0x42; TCCR2B = 0x06; //start } void timer3_init(void) { TCCR3B = 0x00; //stop OCR3AH = 0x3D; OCR3AL = 0x08; TCCR3A = 0x00; TCCR3C = 0x00; TCCR3B = 0x0B; //start Timer } ISR(TIMER3_COMPA_vect) { PORTE ^= _BV(PE7); } int main(void) { device_init(); timer1_init(); timer2_init(); timer3_init(); TIMSK3 = 0x02; sei(); while (1) { SMCR |= (0x00<<SM0); sleep_mode(); } } 根据程序中 T1、T2、T3 的配置参数(包括工作模式、分频系数、初值),通过更改SMCR |= (0x00<<SM0)为SMCR |= (0x03<<SM0)和SMCR |= (0x03<<SM0)来分析三个定时器驱动 LED 灯的方式有何区别

根据程序中 T1、T2、T3 的配置参数,三个定时器的工作模式、分频系数、初值均不同,因此驱动 LED 灯的方式也有所区别。 在SMCR |= (0x00<<SM0)的情况下,MCU处于睡眠模式,当定时器中断被触发时,会执行ISR(TIMER3_COMPA_vect)中的代码,即让PE7引脚取反,从而驱动LED灯。 在SMCR |= (0x03<<SM0)的情况下,MCU进入睡眠模式,但是会保持定时器的工作。对于T1,其工作模式为PWM相位正确模式,分频系数为64,初值为0x0800,当计数器计数到OCRA的值时,会触发比较匹配中断,执行ISR(TIMER1_COMPA_vect)中的代码,即让PD7引脚取反,从而驱动LED灯。对于T2,其工作模式为CTC模式,分频系数为256,初值为0x80,当计数器计数到OCR2A的值时,会触发比较匹配中断,执行ISR(TIMER2_COMPA_vect)中的代码,即让PB4引脚取反,从而驱动LED灯。对于T3,其工作模式为PWM相位正确模式,分频系数为64,初值为0x0800,当计数器计数到OCRA的值时,会触发比较匹配中断,执行ISR(TIMER3_COMPA_vect)中的代码,即让PE7引脚取反,从而驱动LED灯。 因此,当SMCR |= (0x03<<SM0)时,T1、T2、T3驱动LED灯的方式与SMCR |= (0x00<<SM0)时不同。

相关推荐

最新推荐

recommend-type

通用的I/O模拟串口程序

1. init_uart():必须在开始通信之前调用该函数,以初始化串口。 2. get_rx_pin_status():返回接收引脚的状态,高电平或低电平。 3. set_tx_pin_high():将传输引脚设置为高电平。 4. set_tx_pin_low():将传输引脚...
recommend-type

详解Python 多线程 Timer定时器/延迟执行、Event事件

Python中的多线程是并发处理任务的重要工具,而`Timer`和`Event`则是Python标准库`threading`模块中的两个关键组件,用于控制线程的执行时机和交互。 `Timer`类是`Thread`的子类,它提供了一种定时执行任务的功能。...
recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。