假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素结点,试编写相应的队列初始化,入队列和出队列的算法

时间: 2024-04-21 11:17:08 浏览: 37
队列初始化算法: void InitQueue(LinkQueue& Q) { Q.front = Q.rear = new QueueNode; Q.front->next = Q.front; } 入队列算法: void EnQueue(LinkQueue& Q, ElemType x) { QueueNode* s = new QueueNode; s->data = x; s->next = Q.rear->next; Q.rear->next = s; Q.rear = s; } 出队列算法: bool DeQueue(LinkQueue& Q, ElemType& x) { if (Q.front == Q.rear) { return false; } QueueNode* p = Q.front->next; x = p->data; Q.front->next = p->next; if (Q.rear == p) { Q.rear = Q.front; } delete p; return true; } 笑话:为什么程序员总是在厕所里思考问题?因为那里有最佳的思考环境:没有妨碍,没有干扰,没有处理器。
相关问题

假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素结点,试编写相应的初始化、入队以及出队算法。

### 回答1: 初始化算法: 1. 创建一个带头结点的循环链表,头结点的数据域可以为空。 2. 将队尾指针指向头结点,表示队列为空。 入队算法: 1. 创建一个新结点,将要入队的元素存储在新结点的数据域中。 2. 将新结点插入到队尾指针所指向的结点之后。 3. 将队尾指针指向新结点。 出队算法: 1. 判断队列是否为空,如果为空则无法出队,返回错误信息。 2. 将队头指针指向头结点的下一个结点,即第一个元素结点。 3. 将第一个元素结点从链表中删除。 4. 如果队列中只有一个元素,将队尾指针指向头结点。 5. 返回出队的元素。 ### 回答2: 循环链表通常用于表示队列和栈等数据结构,相比于普通链表,循环链表增加了头尾相连接的特性,使得一些操作更加方便。在带头结点的循环链表表示队列中,我们需要一个指针来指向队尾元素结点。 首先是初始化算法。我们可以新创建一个结点,将其作为头结点,然后将队尾指针指向头结点即可。 ``` void InitQueue(LinkQueue &Q) { Q.front = Q.rear = new QNode; // 创建头结点 Q.front->next = Q.front; // 头结点的next指向自己,表示空队列 } ``` 然后是入队算法。将新元素插入到队列尾部即可。由于是循环链表,我们需要将队尾指针后移一位,使其指向新的队列尾。 ``` void EnQueue(LinkQueue &Q, ElemType x) { QNode *p = new QNode; // 创建新结点 p->data = x; p->next = Q.rear->next; // 将新结点插入队尾 Q.rear->next = p; Q.rear = p; // 队尾指针后移一位 } ``` 最后是出队算法。由于队列是先进先出的,所以我们需要删除队列头部的元素。这时候需要将队头指针后移一位,使其指向新的队列头。 ``` bool DeQueue(LinkQueue &Q, ElemType &x) { if (Q.front == Q.rear) // 队列为空 return false; QNode *p = Q.front->next; // 将头结点的下一个结点出队 x = p->data; Q.front->next = p->next; if (Q.rear == p) // 如果出队后队列变为空,需要将队尾指针指向头结点 Q.rear = Q.front; delete p; return true; } ``` 以上就是带头结点的循环链表表示队列的初始化、入队以及出队算法的实现。在实际应用中,循环链表通常可以提高队列操作的效率和空间利用率。 ### 回答3: 1. 初始化循环链表队列 循环链表队列需要使用一个带头结点的链表来表示,因此初始化需要首先创建一个头结点的链表,并将指向队尾元素结点的指针置为 NULL。 具体实现方式如下: ``` typedef struct Node { // 队列元素数据类型 DataType data; // 指向下一个节点的指针 struct Node* next; } Node, *QueuePtr; typedef struct { // 头结点指针 QueuePtr front; // 指向队尾元素的指针 QueuePtr rear; } LinkQueue; // 初始化循环链表队列 void initQueue(LinkQueue& Q) { // 创建头结点,并使其 next 指针指向自身 Q.front = Q.rear = new Node; Q.front->next = Q.front; } ``` 2. 入队操作 当队列中有新的元素需要添加时,需要将其插入到队尾元素的后面,并更新队尾元素的指针。 具体实现方式如下: ``` // 将新元素插入到队列的队尾 void enQueue(LinkQueue& Q, DataType x) { // 创建新节点 QueuePtr p = new Node; p->data = x; p->next = Q.front; // 插入节点 Q.rear->next = p; Q.rear = p; } ``` 3. 出队操作 当队列中有元素需要被删除时,需要删除队头元素,并更新队头元素的指针。 具体实现方式如下: ``` // 删除队列的队头元素并返回其值 DataType deQueue(LinkQueue& Q) { if (Q.rear == Q.front) { // 队列为空 throw "Queue Empty!"; } // 取出队头元素 QueuePtr p = Q.front->next; DataType x = p->data; // 更新队头元素指针 if (Q.rear == p) { // 如果队列只有一个元素,需要将 rear 指针也置为 NULL Q.rear = Q.front; } Q.front->next = p->next; // 删除节点并释放空间 delete p; return x; } ``` 综上所述,带头结点的循环链表队列的初始化、入队和出队操作可以通过上述代码来实现。

假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素结点,试编写相应的初始化队列,入队列和出队列算法用c++表示

好的,我明白了。以下是相应的算法: 初始化队列: ``` void initQueue(LinkQueue &Q) { Q.front = Q.rear = (LinkNode*) malloc(sizeof(LinkNode)); // 创建头结点 Q.front->next = Q.front; // 头结点指向自己,表示空队列 } ``` 入队列: ``` void enQueue(LinkQueue &Q, ElemType x) { LinkNode *s = (LinkNode*) malloc(sizeof(LinkNode)); s->data = x; s->next = Q.rear->next; // 新节点指向头结点 Q.rear->next = s; // 将新节点插入队尾 Q.rear = s; // 修改队尾指针 } ``` 出队列: ``` bool deQueue(LinkQueue &Q, ElemType &x) { if(Q.front == Q.rear) return false; // 空队列 LinkNode *p = Q.front->next; x = p->data; Q.front->next = p->next; // 将头结点指向删除节点的下一个节点 if(Q.rear == p) Q.rear = Q.front; // 如果删除的是队尾节点,修改队尾指针 free(p); // 释放空间 return true; } ``` 其中,`LinkNode` 是循环链表的节点结构体,`LinkQueue` 是队列结构体,`ElemType` 是数据元素类型。

相关推荐

最新推荐

recommend-type

基于微信小程序的新生报到系统设计与实现.docx

基于微信小程序的新生报到系统设计与实现.docx
recommend-type

基于java的电商平台的设计与实现.docx

基于java的电商平台的设计与实现.docx
recommend-type

基于java的大学生智能消费记账系统的设计与实现.docx

基于java的大学生智能消费记账系统的设计与实现.docx
recommend-type

基于java的植物健康系统设计与实现.docx

基于java的植物健康系统设计与实现.docx
recommend-type

weixin151云匹面粉直供微信小程序+springboot.rar

所有源码,都可正常运行
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。