num = num * 10 + expression[i] - '0';计算具体举例

时间: 2023-09-28 18:05:56 浏览: 38
假设有一个字符串 expression,内容为 "12345",我们要将其转换为整数类型,可以使用如下代码: ```c++ int num = 0; for (int i = 0; i < expression.size(); i++) { num = num * 10 + expression[i] - '0'; } ``` 在循环的第一次迭代中,i 的值为 0,所以 expression[i] 的值为 '1','1' 的 ASCII 码值为 49,而 '0' 的 ASCII 码值为 48,所以 expression[i] - '0' 的值为 1。因此,num 的初始值为 0,经过一次运算后,其值变为 1。 在循环的第二次迭代中,i 的值为 1,所以 expression[i] 的值为 '2','2' 的 ASCII 码值为 50,而 '0' 的 ASCII 码值为 48,所以 expression[i] - '0' 的值为 2。因此,num 的值为 1,经过一次运算后,其值变为 12。 依此类推,最终 num 的值将变为 12345。
相关问题

; while (i < len && is_digit(expression[i])) { num = num * 10 + expression[i] - '0'; i++; } i--; num_stack[++num_top] = num; }。举例解析

这段代码是一个解析表达式中数字的部分。假设我们有一个表达式字符串 `expression`,它的长度为 `len`。这段代码会遍历字符串中的每一个字符,如果遇到数字则会将其转换成一个整数 `num`。 具体来说,这段代码使用一个 `while` 循环遍历字符串中的字符。在循环中,首先判断当前字符是否是数字,如果是则将其转换为整数并加到 `num` 中。由于可能会有多位数字,因此需要将 `num` 左移一位(相当于乘以 10)并加上当前数字字符的值(减去字符 '0' 的 ASCII 码值)。然后将循环变量 `i` 加一,继续遍历下一个字符。 最后,将 `i` 减一是为了避免在下一次循环中重复处理当前字符。将 `num` 放入数字栈 `num_stack` 的栈顶,然后将数字栈的指针 `num_top` 加一,表示栈顶指针向上移动了一个位置。 例如,如果表达式字符串为 "123+456",则在第一次循环中,当 `i=0` 时,字符 '1' 是一个数字,因此将其转换为数值 1 并加到 `num` 中,此时 `num=1`。然后将循环变量 `i` 加一,变成 `i=1`,继续遍历下一个字符 '2'。由于 '2' 仍然是数字,将其转换为数值 2 并加到 `num` 中,此时 `num=12`。以此类推,最后得到整数值 123 并将其压入数字栈中。

编写一个加减乘除运算的小型计算系统,当输入为0时退出,用函数实现各项功能。要求如下显示效果: *****************************+ *+1---------加法*+ *+2--

以下是一个小型计算系统的示例代码,使用函数实现加减乘除运算,并在输入为0时退出: ```python def add(num1, num2): return num1 + num2 def subtract(num1, num2): return num1 - num2 def multiply(num1, num2): return num1 * num2 def divide(num1, num2): if num2 != 0: return num1 / num2 else: return "除数不能为0" while True: print("*****************************") print("*+1--加法*+") print("*+2--减法*+") print("*+3--乘法*+") print("*+4--除法*+") print("*+0--退出*+") print("*****************************") choice = int(input("请输入您的选择:")) if choice == 0: break elif choice == 1: num1 = float(input("请输入第一个数字:")) num2 = float(input("请输入第二个数字:")) result = add(num1, num2) print("结果:", result) elif choice == 2: num1 = float(input("请输入第一个数字:")) num2 = float(input("请输入第二个数字:")) result = subtract(num1, num2) print("结果:", result) elif choice == 3: num1 = float(input("请输入第一个数字:")) num2 = float(input("请输入第二个数字:")) result = multiply(num1, num2) print("结果:", result) elif choice == 4: num1 = float(input("请输入第一个数字:")) num2 = float(input("请输入第二个数字:")) result = divide(num1, num2) print("结果:", result) else: print("无效的选择,请重新输入") ```

相关推荐

封装成函数: for(int i = 8; i <= 15; i++){ num[index++] = a4[i]; } for(int i = 8; i <= 15; i++){ num[index++] = a3[i]; } for(int i = 8; i <= 15; i++){ num[index++] = a2[i]; } for(int i = 8; i <= 15; i++){ num[index++] = a1[i]; } for(int i = 0; i <= 7; i++){ num[index++] = a1[i]; } for(int i = 0; i <= 7; i++){ num[index++] = a2[i]; } for(int i = 0; i <= 7; i++){ num[index++] = a3[i]; } for(int i = 0; i <= 7; i++){ num[index++] = a4[i]; } for(int i = 23; i >= 16; i--){ num[index++] = a1[i]; } for(int i = 23; i >= 16; i--){ num[index++] = a2[i]; } for(int i = 23; i >= 16; i--){ num[index++] = a3[i]; } for(int i = 23; i >= 16; i--){ num[index++] = a4[i]; } for(int i = 24; i <= 31; i++){ num[index++] = a4[i]; } for(int i = 24; i <= 31; i++){ num[index++] = a3[i]; } for(int i = 24; i <= 31; i++){ num[index++] = a2[i]; } for(int i = 24; i <= 31; i++){ num[index++] = a1[i]; } for(int i = 40; i <= 47; i++){ num[index++] = a4[i]; } for(int i = 40; i <= 47; i++){ num[index++] = a3[i]; } for(int i = 40; i <= 47; i++){ num[index++] = a2[i]; } for(int i = 40; i <= 47; i++){ num[index++] = a1[i]; } for(int i = 39; i >= 32; i--){ num[index++] = a1[i]; } for(int i = 39; i >= 32; i--){ num[index++] = a2[i]; } for(int i = 39; i >= 32; i--){ num[index++] = a3[i]; } for(int i = 39; i >= 32; i--){ num[index++] = a4[i]; } for(int i = 55; i >= 48; i--){ num[index++] = a1[i]; } for(int i = 55; i >= 48; i--){ num[index++] = a2[i]; } for(int i = 55; i >= 48; i--){ num[index++] = a3[i]; } for(int i = 55; i >= 48; i--){ num[index++] = a4[i]; } for(int i = 56; i <= 63; i++){ num[index++] = a4[i]; } for(int i = 56; i <= 63; i++){ num[index++] = a3[i]; } for(int i = 56; i <= 63; i++){ num[index++] = a2[i]; } for(int i = 56; i <= 63; i++){ num[index++] = a1[i]; }

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

二项分布:离散分布中的关键案例,理解二项分布的应用

![二项分布:离散分布中的关键案例,理解二项分布的应用](https://img-blog.csdnimg.cn/20201206104644803.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDQ0MTEzMQ==,size_16,color_FFFFFF,t_70) # 1. 二项分布的基本概念 二项分布是一种离散概率分布,用于描述在固定次数的独立试验中成功事件发生的次数。它广泛应用于各种领域,包括质量控
recommend-type

程序哪里有错误 fun(int *p1,int *p2) { int *p; *p = *p1; *p1 = *p2; *p2 = *p; }

这个函数`fun(int *p1, int *p2)`存在几个错误和潜在问题: 1. 变量声明与赋值:你试图通过`*p = *p1`来分配指针`p`的值,但实际上`p`是一个未初始化的指针,直接赋值可能会导致不确定的行为。正确的做法是先为`p`指向一个内存位置。 2. 临时变量:你的代码没有明确使用`p`这个临时变量。如果你想交换`p1`和`p2`所指向的值,应该使用指针的解引用操作,而不是将`*p`赋值给它们。 3. 指向不确定的数据:由于`p`没有被初始化,如果它指向的是栈上的临时空间,当函数结束时这些值可能会丢失,除非特别指定它指向堆中的数据。 修复后的代码可能如下所示: ```