多元非线性回归python

时间: 2023-08-25 08:18:15 浏览: 55
引用中的代码展示了如何使用Python进行多元非线性回归。在这个例子中,使用了pandas库读取Excel数据,并将自变量x和因变量y转换为numpy数组。然后,使用np.polyfit函数进行二次项拟合,生成预测数据和预测曲线数据。最后,使用matplotlib库将数据点和拟合曲线进行可视化展示。这个例子展示了如何使用Python进行多元非线性回归建模和预测。你可以根据自己的数据和模型需求进行相应的修改和调整。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python 非线性回归 - 树懒学堂](https://blog.csdn.net/weixin_39722917/article/details/111069929)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python非线性回归预测模型实验完整版](https://blog.csdn.net/m0_51431003/article/details/130469613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

多元非线性回归是利用多个自变量将因变量与自变量之间的关系拟合为非线性函数的一种回归分析方法。Python中可以使用scikit-learn进行多元非线性回归的建模。以下是一个简单的多元非线性回归的Python代码示例: python # 导入需要的库 from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression # 加载Boston房价数据集 boston = load_boston() X = boston.data y = boston.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 将自变量进行多项式变换 poly = PolynomialFeatures(degree=2) X_train_poly = poly.fit_transform(X_train) X_test_poly = poly.transform(X_test) # 进行线性回归拟合 reg = LinearRegression() reg.fit(X_train_poly, y_train) # 输出预测结果和测试结果的R2分数 print('预测结果:', reg.predict(X_test_poly)) print('测试结果R2分数:', reg.score(X_test_poly, y_test)) 这里的代码中,首先使用sklearn.datasets库中的load_boston函数加载Boston房价数据集。然后使用train_test_split将数据集分为训练集和测试集。接着使用PolynomialFeatures进行多项式变换,将自变量进行多项式拟合,这里设置degree=2表示进行二次多项式拟合。最后使用LinearRegression函数进行线性回归拟合。输出预测结果和测试结果的R2分数。 需要注意的是,在使用多项式变换的时候,需要对训练集和测试集分别进行变换,不能直接对整个数据集进行变换,否则会导致数据泄露的问题,影响模型的预测效果。
在Python中,可以使用多项式回归来进行多元非线性拟合。多项式回归是一种常用的方法,它可以用来拟合更加复杂的数据集。通过使用多项式回归,我们可以将数据拟合成一个多项式函数,从而得到一个非线性的拟合曲线。 以下是一个使用多项式回归来进行多元非线性拟合的代码示例: python import numpy as np import matplotlib.pyplot as plt # 定义数据集 x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y = np.array([2.5, 4.5, 4.8, 5.5, 6.0, 7.0, 7.8, 8.0, 9.0, 9.5]) # 计算多项式回归系数 coefs = np.polyfit(x, y, 3) # 使用np.poly1d函数来生成一个多项式拟合对象 poly = np.poly1d(coefs) # 生成新的横坐标,使得拟合曲线更加平滑 new_x = np.linspace(min(x), max(x), 1000) # 绘制拟合曲线 plt.scatter(x, y) plt.plot(new_x, poly(new_x), color='red') plt.show() 在上述代码中,我们首先定义了数据集x和y,然后使用np.polyfit函数计算多项式回归系数。接着,我们使用np.poly1d函数将系数转换为一个多项式拟合对象。最后,我们生成新的横坐标new_x,并使用拟合对象poly对新的横坐标进行拟合,得到拟合曲线。最后,我们使用matplotlib库将数据点和拟合曲线绘制出来。 通过以上代码,我们可以得到一个多元非线性拟合的结果。123 #### 引用[.reference_title] - *1* *3* [三种用python进行线性/非线性拟合的方法](https://blog.csdn.net/weixin_67016521/article/details/130119425)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [python完成非线性拟合](https://blog.csdn.net/u010824101/article/details/122162557)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
要在Python中计算非线性回归的置信区间,你可以使用统计模块statsmodels中的函数。这个模块提供了一个称为OLS(Ordinary Least Squares)的方法来进行回归分析,并且可以计算置信区间。下面是一个示例代码,展示了如何使用statsmodels来计算非线性回归的置信区间: import numpy as np import statsmodels.api as sm # 定义自变量x和因变量y的数据 x = (20 - np.arange(20))**2 y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 添加常数列 X = sm.add_constant(x) # 使用OLS方法进行回归分析 model = sm.OLS(y, X) # 拟合回归模型 results = model.fit() # 计算预测值和置信区间 predictions = results.get_prediction(X) predicted_values = predictions.predicted_mean confidence_interval = predictions.conf_int() # 打印预测值和置信区间 print("Predicted Values:", predicted_values) print("Confidence Interval:", confidence_interval) 在这个示例中,首先定义了自变量x和因变量y的数据。然后使用sm.add_constant()函数为自变量添加常数列,这是因为OLS方法需要常数项。接下来,使用sm.OLS()方法创建了回归模型,并使用fit()方法拟合了模型。最后,使用get_prediction()函数计算了预测值和置信区间,其中predicted_mean表示预测值,conf_int()表示置信区间。 请注意,这只是一个示例代码,并且假设你已经安装了statsmodels模块。你需要根据你的具体问题和数据进行相应的调整和修改。123 #### 引用[.reference_title] - *1* *3* [用Python绘制回归线、置信区间和预测区间](https://blog.csdn.net/weixin_34377697/article/details/112830439)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [python多元(非)线性回归及置信区间的绘制](https://blog.csdn.net/m0_46268055/article/details/125362141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
对于多元非线性回归模型,评估其可信度的方法与线性回归略有不同。一个常用的方法是计算拟合优度(goodness of fit)指标,如决定系数(coefficient of determination)或校正决定系数(adjusted coefficient of determination)。 以下是一个示例代码,用于计算多元非线性回归模型的可信度测试: python import numpy as np from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression # 准备数据 X = np.array([[1, 2], [3, 4], [5, 6]]) # 自变量 y = np.array([10, 20, 30]) # 因变量 # 创建多项式特征 poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) # 创建线性回归模型 model = LinearRegression() # 拟合数据 model.fit(X_poly, y) # 计算决定系数 r_squared = model.score(X_poly, y) print("R-squared:", r_squared) 在上面的示例中,我们首先准备了自变量X和因变量y的数据。然后,使用PolynomialFeatures将自变量X转换为多项式特征。接下来,创建了一个线性回归模型,并使用fit()方法拟合转换后的数据。最后,使用score()方法计算模型的决定系数,并将结果打印出来。 请注意,这只是一个简单的示例,实际应用中可能涉及到更复杂的非线性函数和模型。同时,还可以使用其他指标来评估模型的可信度,如根据残差分析进行的F统计量、AIC(赤池信息准则)等。具体选择哪种指标取决于具体情况和需求。

最新推荐

竹签数据集配置yaml文件

这个是竹签数据集配置的yaml文件,里面是我本地的路径,大家需要自行确认是否修改

半导体测试设备 头豹词条报告系列-17页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:双击打开,无解压密码 大小:10M以内

ChatGPT技术在金融投资中的智能决策支持.docx

ChatGPT技术在金融投资中的智能决策支持

13、基于Jsp+MySQL的物业管理系统.zip

项目描述 主要功能有: 保安保洁管理 保修管理 房产信息管理 公告管理 管理员信息管理 业主信息管理 登录管理 技术栈 jsp + bootstrap + jquery  + DBCP 运行环境 Jdk8 + eclipse + Tomcat8.5 + mysql5.7 数据库修改后地址 url = jdbc:mysql://localhost:3306/management?characterEncoding=utf8

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I