celeba_folds[i] += images[i * count_per_fold: (i + 1) * count_per_fold]
时间: 2024-06-05 10:06:42 浏览: 154
This code line is assigning a subset of images to the i-th element of the list "celeba_folds". The subset is defined by taking a slice of the "images" list, starting from index i times "count_per_fold", and ending at index (i+1) times "count_per_fold" (exclusive).
This code is likely part of a k-fold cross-validation process, where the dataset is divided into k equally-sized folds, and each fold is used as a validation set while the remaining folds are used for training.
相关问题
for k in k_choices: k_to_accuracies[k] = [] for i in range(num_folds): X_train_fold = np.concatenate([ fold for j, fold in enumerate(X_train_folds) if i != j ]) y_train_fold = np.concatenate([ fold for j, fold in enumerate(y_train_folds) if i != j ]) X_val = X_train_folds[i] y_val = y_train_folds[i] classifier.train(X_train_fold, y_train_fold) y_pred_fold = classifier.predict(X_val, k=k, num_loops=0) num_correct = np.sum(y_pred_fold == y_val) accuracy = float(num_correct) / X_val.shape[0] k_to_accuracies[k].append(accuracy)
这段代码是一个 k-fold 交叉验证的过程,用于评估分类器在不同 k 值下的准确率。其中,k_choices 是一个包含不同 k 值的列表,k_to_accuracies 是一个字典,用于存储每个 k 值对应的准确率列表。
在每个 k 值的循环中,首先将当前 k 值对应的准确率列表初始化为空。然后,在每个折叠循环中,通过 np.concatenate 将除了当前折叠之外的所有折叠样本合并为训练集 X_train_fold 和 y_train_fold。同时,将当前折叠样本作为验证集 X_val 和 y_val。
接下来,使用分类器的 train 方法在训练集上进行训练。然后,使用分类器的 predict 方法在验证集上进行预测,设置 k 值为当前循环的 k 值,num_loops 为 0。
计算预测正确的数量 num_correct,然后通过除以验证集的样本数量 X_val.shape[0] 得到准确率,并将其添加到当前 k 值对应的准确率列表中。
最终,返回包含不同 k 值对应准确率列表的字典 k_to_accuracies。
详细分析代码“from sklearn.cross_validation import StratifiedKFold from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score,precision_score #from sklearn.model_selection import train_test_split x,y=zip(*sentences) from sklearn.feature_extraction.text import CountVectorizer vec = CountVectorizer( analyzer='word', # tokenise by character ngrams ngram_range=(1,4), # use ngrams of size 1 and 2 max_features=20000, # keep the most common 1000 ngrams ) vec.fit(x) def stratifiedkfold_cv(x,y,clf_class,shuffle=True,n_folds=5,**kwargs): stratifiedk_fold = StratifiedKFold(y, n_folds=n_folds, shuffle=shuffle) y_pred = y[:] for train_index, test_index in stratifiedk_fold: X_train, X_test = x[train_index], x[test_index] y_train = y[train_index] clf = clf_class(**kwargs) clf.fit(X_train,y_train) y_pred[test_index] = clf.predict(X_test) return y_pred NB = MultinomialNB print(precision_score(y ,stratifiedkfold_cv(vec.transform(x) ,np.array(y),NB) , average='macro'))”并添加注释,每段代码的作用,参数代表什么
```
# 导入StratifiedKFold交叉验证、MultinomialNB朴素贝叶斯分类器和评估指标accuracy_score、precision_score
from sklearn.cross_validation import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, precision_score
# 从sentences中分离出x和y
x, y = zip(*sentences)
# 导入CountVectorizer词袋模型,并对x进行处理
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(
analyzer='word', # 按照单词进行分割
ngram_range=(1,4), # 使用1~4个单词的组合方式
max_features=20000, # 保留最常见的20000个单词组合
)
vec.fit(x)
# 对数据进行StratifiedKFold交叉验证
def stratifiedkfold_cv(x,y,clf_class,shuffle=True,n_folds=5,**kwargs):
stratifiedk_fold = StratifiedKFold(y, n_folds=n_folds, shuffle=shuffle) # 将数据划分为5折,每一折中正负样本比例都相同
y_pred = y[:] # 复制y
for train_index, test_index in stratifiedk_fold: # 循环5次,每一次使用其中4折作为训练数据,1折作为测试数据
X_train, X_test = x[train_index], x[test_index]
y_train = y[train_index]
clf = clf_class(**kwargs) # 使用朴素贝叶斯分类器
clf.fit(X_train,y_train) # 训练模型
y_pred[test_index] = clf.predict(X_test) # 预测测试数据
return y_pred
NB = MultinomialNB # 定义朴素贝叶斯分类器
print(precision_score(y, # 计算精确率
stratifiedkfold_cv(vec.transform(x), # 对数据进行词袋模型转换
np.array(y), # 将y转换为数组形式
NB), # 使用朴素贝叶斯分类器进行分类
average='macro')) # 按照宏平均计算
```
参数说明:
- x: 输入的文本数据,类型为tuple或list
- y: 对应的标签,类型为tuple或list
- analyzer: 按照什么方式进行分割,默认为'word',即按照单词进行分割
- ngram_range: 使用几个单词的组合,默认为(1,1),即只使用单个单词
- max_features: 保留最常见的单词组合数量,默认为None,即保留所有单词组合
- shuffle: 是否对数据进行随机排序,默认为True
- n_folds: 将数据划分为几折,默认为5
- clf_class: 指定分类器的类别,默认为MultinomialNB
- kwargs: 指定分类器的其他参数
此段代码的作用是:对文本数据进行朴素贝叶斯分类器的精确率评估,并使用StratifiedKFold交叉验证对数据进行划分,保证每一折中正负样本的比例相同。首先将文本数据进行词袋模型转换,然后使用stratifiedkfold_cv函数对数据进行交叉验证和分类,最后计算并输出精确率值。
阅读全文