torch.max和torch.maximum的区别

时间: 2023-07-23 19:54:04 浏览: 335
torch.max和torch.maximum是PyTorch中用于求最大值的函数,但它们有一些区别。 torch.max是一个函数,可以用来计算给定输入张量中的最大值。它可以接受多个输入张量作为参数,并返回一个包含这些张量中元素的最大值的张量。当给定一个输入张量时,torch.max会返回该张量中的最大值。 例如,对于输入张量x,torch.max(x)将返回x中的最大值。 torch.maximum是一个逐元素的函数,用于计算两个输入张量中对应元素的最大值。它需要两个输入张量作为参数,并返回一个张量,其中每个元素都是对应位置上两个输入张量中的最大值。 例如,对于输入张量x和y,torch.maximum(x, y)将返回一个张量,其中每个元素都是x和y对应位置上的最大值。 简而言之,torch.max用于求一个张量中的最大值,而torch.maximum用于求两个张量中对应位置元素的最大值。
相关问题

torch.maximum() 和

torch.max()函数有什么区别? 回答: torch.max()函数和torch.maximum()函数是不同的。torch.max()函数用于返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引。\[1\]\[2\]\[3\]而torch.maximum()函数是一个逐元素的操作,用于返回两个张量中对应位置的较大值。 #### 引用[.reference_title] - *1* *2* [详解 torch.max 函数](https://blog.csdn.net/ViatorSun/article/details/108909312)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [torch.max()用法](https://blog.csdn.net/weixin_43635550/article/details/100534904)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

torch.maximum

torch.maximum函数在PyTorch中不存在。根据提供的引用内容,我们可以看到torch.max()函数的用法和返回结果。torch.max()函数的用法是torch.max(input, dim, keepdim=False)。它返回两个输出,第一个输出是指定维度上的最大值,第二个输出是最大值在该维度上的索引。所以,我们无法提供关于torch.maximum函数的信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【冰糖Python】PyTorch:最大值 最小值 torch.max() torch.min() torch.maximum() torch.minimum()](https://blog.csdn.net/xiaoxiao_ziteng/article/details/114487441)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [PyTorch中的torch.max()和torch.maximum()的用法详解](https://blog.csdn.net/gongxifacai_believe/article/details/121278401)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [PyTorch的torch.cat用法](https://download.csdn.net/download/weixin_38653040/12850385)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

相关推荐

校正以下代码的语法错误 def encode_edge(self, mode, node_history, node_history_st, edge_type, neighbors, neighbors_edge_value, first_history_indices, batch_size): max_hl = self.hyperparams['maximum_history_length'] max_neighbors = 0 for neighbor_states in neighbors: max_neighbors = max(max_neighbors, len(neighbor_states)) edge_states_list = list() # list of [#of neighbors, max_ht, state_dim] for i, neighbor_states in enumerate(neighbors): # Get neighbors for timestep in batch if len(neighbor_states) == 0: # There are no neighbors for edge type # TODO necessary? neighbor_state_length = int( np.sum([len(entity_dims) for entity_dims in self.state[edge_type[1]].values()]) ) edge_states_list.append(torch.zeros((1, max_hl + 1, neighbor_state_length), device=self.device)) else: edge_states_list.append(torch.stack(neighbor_states, dim=0).to(self.device)) # if self.hyperparams['edge_state_combine_method'] == 'sum': # Used in Structural-RNN to combine edges as well. op_applied_edge_states_list = list() for neighbors_state in edge_states_list: op_applied_edge_states_list.append(torch.sum(neighbors_state, dim=0))#torch.sum combined_neighbors = torch.stack(op_applied_edge_states_list, dim=0) # 获取combined_neighbors的第一个维度,代表邻接边的总数 combined_neighbors_0 = combined_neighbors.shape[0] # 创建全零矩阵s_next,形状为[batch_size, max_neighbors, combined_neighbors_0] s_next = torch.zeros((batch_size, max_neighbors, combined_neighbors_0), device=self.device) # 为s_next矩阵中每一行赋值为对应的combined_neighbors # for b in range(batch_size): # s_next[b, :len(neighbors[b]), :] = combined_neighbors[first_history_indices[b]] for i in range(batch_size): s_next[0, i, :] = batch_size[:] for i in range(max_neighbors): s_next[1, i, :] = max_neighbors[i, :] for i in range(combined_neighbors.shape[0]): s_next[2, i, :] = combined_neighbors

def Grad_Cam(model, image, layer_name): # 获取模型提取全链接之前的特征图 new_model = nn.Sequential(*list(model.children())[:44]) print(new_model) new_model.eval() feature_maps = new_model(image) # 获取模型最后一层卷积层 target_layer = model._modules.get(layer_name) # 将模型最后一层卷积层的输出结果作为反向传播的梯度 gradient = torch.zeros(feature_maps.size()) # 返回一个形状与feature_maps相同全为标量 0 的张量 gradient[:, :, feature_maps.size()[2]//2, feature_maps.size()[3]//2] = 1 target_layer.zero_grad() # 将模型中参数的梯度置为0 feature_maps.backward(gradient=gradient) # 获取模型最后一层卷积层的输出结果和梯度 _, _, H, W = feature_maps.size() output_activations = feature_maps.detach().numpy()[0] gradients = target_layer.weight.grad.detach().numpy() # 计算特征图中每个像素点的权重 weights = np.mean(gradients, axis=(2, 3))[0] cam = np.zeros((H, W), dtype=np.float32) for i, w in enumerate(weights): cam += w * output_activations[i, :, :] # 对权重进行归一化处理 cam = np.maximum(cam, 0) cam = cv2.resize(cam, (1440, 1440)) cam = cam - np.min(cam) cam = cam / np.max(cam) # 将热力图叠加到原图上 heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 image = image.detach().numpy() image = np.transpose(image, (0, 2, 3, 1)) img_CCT = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CCT.png") img_CP = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CP.png") img_CCT = cv2.resize(img_CCT, (1440, 1440)) img_CP = cv2.resize(img_CP, (1440, 1440)) cam_img = heatmap + np.float32(img_CCT[0]) cam_img = cam_img / np.max(cam_img) return np.uint8(255 * cam_img) 上述代码不显示热力图,怎么解决

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这