if(keypoints): tmpx = keypoints[0].pt[0] tmpy = keypoints[0].pt[1] cv2.circle(frame,(int(tmpx),int(tmpy)),10,(0,255,0),-1) for i in range (1, len(keypoints)): x = keypoints[i].pt[0] y = keypoints[i].pt[1] cv2.circle(frame,(int(x),int(y)),10,(0,255,0),-1) if tmpy > 82: #第一个斑点的y坐标大于82,更新tmpx、tmpy tmpx = x tmpy = y continue if y > 82: continue if tmpy < y : #第一个斑点的y坐标小于当前斑点y坐标 tmpx = x tmpy = y if tmpy < 82: Postion_x = int(tmpx) Postion_y = int(tmpy) error = 0 else: Postion_x = 80 +15 Postion_y = 60 -20 error = 1 else: Postion_x = 80 +15 Postion_y = 60 -20 error = 1 解释
时间: 2024-02-10 15:28:33 浏览: 104
这段代码的作用是在给定的图像帧上绘制特征点,并根据一些条件找到一个特定的特征点位置。下面是代码的解释:
- 首先,如果存在特征点(keypoints不为空),则获取第一个特征点的x和y坐标,并在图像帧上绘制一个半径为10、颜色为绿色的实心圆。
- 然后,使用一个循环遍历剩余的特征点(从第二个开始),获取它们的x和y坐标,并在图像帧上绘制相应的圆。
- 如果第一个特征点的y坐标大于82,则将tmpx和tmpy更新为当前特征点的坐标,并转向下一次循环。
- 如果当前特征点的y坐标大于82,则继续下一次循环。
- 如果第一个特征点的y坐标小于当前特征点的y坐标,则将tmpx和tmpy更新为当前特征点的坐标。
- 最后,如果tmpy仍然小于82,则将其转换为整数,并分别存储在Postion_x和Postion_y中,同时将error初始化为0。否则,将Postion_x设置为80 + 15,Postion_y设置为60 - 20,并将error设置为1。
- 如果不存在特征点,则将Postion_x设置为80 + 15,Postion_y设置为60 - 20,并将error设置为1。
这段代码的目的是找到第一个y坐标小于82的特征点,并将其位置存储在Postion_x和Postion_y中。如果找不到符合条件的特征点,则使用默认的位置和错误值。
相关问题
我想在以下这段代码中,添加显示标有特征点的图像的功能。def cnn_feature_extract(image,scales=[.25, 0.50, 1.0], nfeatures = 1000): if len(image.shape) == 2: image = image[:, :, np.newaxis] image = np.repeat(image, 3, -1) # TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize. resized_image = image if max(resized_image.shape) > max_edge: resized_image = scipy.misc.imresize( resized_image, max_edge / max(resized_image.shape) ).astype('float') if sum(resized_image.shape[: 2]) > max_sum_edges: resized_image = scipy.misc.imresize( resized_image, max_sum_edges / sum(resized_image.shape[: 2]) ).astype('float') fact_i = image.shape[0] / resized_image.shape[0] fact_j = image.shape[1] / resized_image.shape[1] input_image = preprocess_image( resized_image, preprocessing="torch" ) with torch.no_grad(): if multiscale: keypoints, scores, descriptors = process_multiscale( torch.tensor( input_image[np.newaxis, :, :, :].astype(np.float32), device=device ), model, scales ) else: keypoints, scores, descriptors = process_multiscale( torch.tensor( input_image[np.newaxis, :, :, :].astype(np.float32), device=device ), model, scales ) # Input image coordinates keypoints[:, 0] *= fact_i keypoints[:, 1] *= fact_j # i, j -> u, v keypoints = keypoints[:, [1, 0, 2]] if nfeatures != -1: #根据scores排序 scores2 = np.array([scores]).T res = np.hstack((scores2, keypoints)) res = res[np.lexsort(-res[:, ::-1].T)] res = np.hstack((res, descriptors)) #取前几个 scores = res[0:nfeatures, 0].copy() keypoints = res[0:nfeatures, 1:4].copy() descriptors = res[0:nfeatures, 4:].copy() del res return keypoints, scores, descriptors
可以使用OpenCV库中的cv2.drawKeypoints()函数来显示标有特征点的图像。具体实现如下:
1. 导入OpenCV库:import cv2
2. 在函数中添加以下代码,绘制特征点:
```
img_with_keypoints = cv2.drawKeypoints(image, keypoints, np.array([]), (255,0,0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow("Image with Keypoints", img_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码将在窗口中显示标有特征点的图像。注意,要在函数中添加完整的代码,包括导入OpenCV库等。
def extract_features(image_path): image = cv2.imread(image_path) sift = cv2.xfeatures2d.SIFT_create() keypoints, descriptors = sift.detectAndCompute(image, None) return descriptors
这是一个使用SIFT算法提取图像特征的函数,它的输入是图像的文件路径,输出是图像的SIFT特征描述符。具体来说,它首先使用OpenCV库中的cv2.imread()函数读取图像,然后创建一个SIFT对象,调用其detectAndCompute()方法来检测关键点并计算特征描述符。最后,函数返回特征描述符作为输出。
阅读全文
相关推荐

















