密度加权Nyström谱聚类代码
时间: 2023-07-24 08:15:34 浏览: 77
基于密度的聚类
以下是Python中使用密度加权Nyström谱聚类的示例代码:
```python
import numpy as np
from scipy.sparse import diags, csr_matrix
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import rbf_kernel
class DensityWeightedNystromSpectralClustering:
def __init__(self, n_clusters, n_components=None, gamma=None, random_state=None):
self.n_clusters = n_clusters
self.n_components = n_components
self.gamma = gamma
self.random_state = random_state
self.eigenvecs_ = None
self.kmeans_ = None
def fit(self, X):
n_samples, n_features = X.shape
# 1. Compute pairwise distances
distances = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(i+1, n_samples):
distances[i, j] = np.linalg.norm(X[i] - X[j])
distances[j, i] = distances[i, j]
# 2. Compute density weights
sigma = np.mean(distances) / 2
densities = np.zeros(n_samples)
for i in range(n_samples):
densities[i] = np.sum(np.exp(-distances[i] ** 2 / (2 * sigma ** 2)))
D = diags(densities, format='csr')
W = csr_matrix(np.exp(-distances ** 2 / (2 * sigma ** 2)))
# 3. Random subset of the data
if self.n_components is None:
self.n_components = n_samples // 2
if self.random_state is not None:
random_state = np.random.RandomState(self.random_state)
else:
random_state = np.random
idx = random_state.permutation(n_samples)[:self.n_components]
# 4. Compute kernel matrix
if self.gamma is None:
self.gamma = 1.0 / n_features
K = rbf_kernel(X[idx], gamma=self.gamma)
# 5. Compute approximate eigenvalues and eigenvectors of W^(-1/2) K W^(-1/2)
D_inv_sqrt = diags(1.0 / np.sqrt(densities), format='csr')
M = D_inv_sqrt.dot(W.dot(D_inv_sqrt.dot(K)))
eigenvalues, eigenvectors = np.linalg.eigh(M)
self.eigenvecs_ = D_inv_sqrt.dot(eigenvectors[:, ::-1])
# 6. Cluster rows of eigenvectors with k-means
self.kmeans_ = KMeans(n_clusters=self.n_clusters, random_state=self.random_state)
self.kmeans_.fit(self.eigenvecs_)
def predict(self, X):
distances = np.zeros((X.shape[0], self.eigenvecs_.shape[0]))
for i in range(X.shape[0]):
for j in range(self.eigenvecs_.shape[0]):
distances[i, j] = np.linalg.norm(X[i] - X[j])
W = np.exp(-distances ** 2 / (2 * sigma ** 2))
D_inv_sqrt = diags(1.0 / np.sqrt(np.sum(W, axis=1)), format='csr')
K = rbf_kernel(X, self.eigenvecs_, gamma=self.gamma)
M = D_inv_sqrt.dot(W.dot(D_inv_sqrt.dot(K)))
return self.kmeans_.predict(M.dot(self.eigenvecs_))
```
使用示例:
```python
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
X, y = make_moons(n_samples=1000, noise=0.05, random_state=42)
model = DensityWeightedNystromSpectralClustering(n_clusters=2, n_components=50, gamma=10.0, random_state=42)
model.fit(X)
y_pred = model.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
```
在这个例子中,我们生成了一个二维月亮形数据集,并使用密度加权Nyström谱聚类将其分成两个簇。
阅读全文