隐马尔可夫模型,python示例代码
时间: 2023-06-02 08:06:53 浏览: 137
隐马尔可夫模型 (HMM, Hidden Markov Model) 是一种概率模型,用于描述一个系统的隐藏状态在某个时刻的概率分布,以及这个系统从一个状态转移到另一个状态的概率。这些信息都是通过观测到的系统行为来推断出来的。
下面是一个使用 Python 实现 HMM 的示例代码:
```python
import numpy as np
class HMM:
def __init__(self, n, m):
self.n = n # number of hidden states
self.m = m # number of observable symbols
self.A = np.zeros((n, n)) # transition probability matrix
self.B = np.zeros((n, m)) # emission probability matrix
self.pi = np.zeros(n) # initial state probability distribution
def fit(self, X, Y, T):
"""
Fit the HMM model to the given data using the Baum-Welch algorithm.
X: list of sequences of observable symbols
Y: list of sequences of hidden states
T: list of lengths of the sequences
"""
# Initialize the model parameters using the given data
self.n = len(set(Y))
self.m = len(set(X))
self.A = np.zeros((self.n, self.n))
self.B = np.zeros((self.n, self.m))
self.pi = np.zeros(self.n)
for x, y, t in zip(X, Y, T):
self.pi[y[0]] += 1
for i in range(t-1):
self.A[y[i]][y[i+1]] += 1
self.B[y[i]][x[i]] += 1
self.pi /= sum(self.pi)
self.A /= np.sum(self.A, axis=1).reshape(-1, 1)
self.B /= np.sum(self.B, axis=1).reshape(-1, 1)
# Use the Baum-Welch algorithm to estimate the model parameters
while True:
# Expectation step
alpha = self._forward(X, T)
beta = self._backward(X, T)
xi = self._compute_xi(X, T, alpha, beta)
gamma = self._compute_gamma(alpha, beta)
# Maximization step
new_A = np.sum(xi, axis=0) / np.sum(gamma[
阅读全文