优化这段代码 for k=1:1:20 N=10*k; A=zeros(N,N); b=zeros(N,1); u=zeros(N,1); h=(right-left)/N; x1=[left : h : right]; x2=[x1(1)+h/2 : h : x1(N)+h/2]; for i=1:1:N-1 hi1=x1(i+1)-x1(i); hi2=x1(i+2)-x1(i+1); A(i,i)=p(x2(i+1))/hi1 + p(x2(i))/hi2 + (hi1+hi2)/2*q(x1(i+1)); A(i,i+1)=-p(x2(i+1))/hi2; b(i)=(hi1+hi2)/2*f(x1(i+1)); if i~=1 A(i,i-1)=-p(x2(i))/hi1; end end

时间: 2023-06-13 13:07:56 浏览: 54
可以尝试以下优化: 1. 向量化变量和操作,尽量使用向量和矩阵运算代替循环。例如,可以将 x1 和 x2 合并成一个向量 x,并用 diff 函数计算 hi1 和 hi2,用 .* 和 ./ 运算代替循环中的乘法和除法。 2. 避免重复计算。例如,可以将 (hi1+hi2)/2 计算出来,然后重复使用。 3. 预分配矩阵和向量。可以在循环外部预先分配 A、b 和 u 的大小,避免循环中重复分配空间。 下面是优化后的代码示例: ``` for k = 1:20 N = 10*k; A = zeros(N-1, N-1); b = zeros(N-1, 1); u = zeros(N, 1); h = (right-left)/N; x = linspace(left, right, N+1); x2 = x(1:end-1) + h/2; hi1 = diff(x); hi2 = diff(x([2:end, end])); p1 = p(x2)./hi1; p2 = p(x2)./hi2; q1 = (hi1+hi2)/2 .* q(x(2:end-1)); f1 = (hi1+hi2)/2 .* f(x(2:end-1)); A = diag(p1 + p2 + q1) + diag(-p2(1:end-1), -1) + diag(-p1(2:end), 1); b = f1; u(2:end-1) = A\b; end ```

相关推荐

代码解释:format long; close all; clear ; clc tic global B0 bh B1 B2 M N pd=8; %问题维度(决策变量的数量) N=100; % 群 (鲸鱼) 规模 readfile HPpos=chushihua; tmax=300; % 最大迭代次数 (tmax) Wzj=fdifference(HPpos); Convergence_curve = zeros(1,tmax); B = 0.1; for t=1:tmax for i=1:size(HPpos,1)%对每一个个体地多维度进行循环运算 % 更新位置和记忆 % j1=(HPpos(i,:)>=B1);j2=(HPpos(i,:)<=B2); % if (j1+j2)==16 % HPpos(i,:)=HPpos(i,:); %%%%有问题,原算法改正&改进算法映射规则 % else % %HPpos(i,:)=B0+bh.(ones(1,8)(-1)+rand(1,8)2);%产生范围内的随机数更新鲸鱼位置 % HPpos(i,:)=rand(1,8).(B2-B1)+B1; % end HPposFitness=Wzj(:,2M+1); end [~,indx] = min(HPposFitness); Target = HPpos(indx,:); % Target HPO TargetScore =HPposFitness(indx); % Convergence_curve(1)=TargetScore; % Convergence_curve(1)=TargetScore; %nfe = zeros(1,MaxIt); %end % for t=2:tmax c = 1 - t((0.98)/tmax); % Update C Parameter kbest=round(Nc); % Update kbest一种递减机制 % for i = 1:N r1=rand(1,pd)<c; r2=rand; r3=rand(1,pd); idx=(r1==0); z=r2.idx+r3.~idx; % r11=rand(1,dim)<c; % r22=rand; % r33=rand(1,dim); % idx=(r11==0); % z2=r22.idx+r33.~idx; if rand<B xi=mean(HPpos); dist = pdist2(xi,HPpos);%欧几里得距离 [~,idxsortdist]=sort(dist); SI=HPpos(idxsortdist(kbest),:);%距离位置平均值最大的搜索代理被视为猎物 HPpos(i,:) =HPpos(i,:)+0.5((2*(c)z.SI-HPpos(i,:))+(2(1-c)z.xi-HPpos(i,:))); else for j=1:pd rr=-1+2z(j); HPpos(i,j)= 2z(j)cos(2pirr)(Target(j)-HPpos(i,j))+Target(j); end end HPposFitness=Wzj(:,2M+1); % % Update Target if HPposFitness(i)<TargetScore Target = HPpos(i,:); TargetScore = HPposFitness(i); end Convergence_curve(t)=TargetScore; disp(['Iteration: ',num2str(t),' Best Fitness = ',num2str(TargetScore)]); end

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。