JAVA野人_Java实现传教士与野人过河问题
时间: 2023-12-09 17:03:12 浏览: 296
传教士与野人过河问题是一个经典的人工智能问题,可以使用Java来实现。
这个问题的基本思路是:有三个传教士和三个野人要过一条河,但是河上只有一条船,船只能装两个人,而且当传教士数量少于野人数量时,野人会吃掉传教士。现在要求设计一个算法,使得所有人都能安全过河。
解决这个问题的常用算法是深度优先搜索(DFS)。具体实现时,可以定义一个状态类,表示当前河岸的状态,然后从初始状态开始,进行深度优先搜索,直到找到一种方案使得所有人都能安全过河,或者搜索所有可能的状态都失败。
以下是Java代码的一个简单实现,仅供参考:
```java
import java.util.ArrayList;
import java.util.List;
public class RiverCrossing {
private int missionaryLeft; // 左岸传教士数量
private int cannibalLeft; // 左岸野人数量
private int missionaryRight; // 右岸传教士数量
private int cannibalRight; // 右岸野人数量
private boolean boat; // 船的位置,true表示在右岸,false表示在左岸
public RiverCrossing(int missionaryLeft, int cannibalLeft, boolean boat, int missionaryRight, int cannibalRight) {
this.missionaryLeft = missionaryLeft;
this.cannibalLeft = cannibalLeft;
this.boat = boat;
this.missionaryRight = missionaryRight;
this.cannibalRight = cannibalRight;
}
// 判断当前状态是否合法
public boolean isValid() {
if (missionaryLeft >= 0 && missionaryRight >= 0 && cannibalLeft >= 0 && cannibalRight >= 0
&& (missionaryLeft == 0 || missionaryLeft >= cannibalLeft)
&& (missionaryRight == 0 || missionaryRight >= cannibalRight)) {
return true;
}
return false;
}
// 判断当前状态是否为目标状态
public boolean isGoal() {
if (missionaryLeft == 0 && cannibalLeft == 0) {
return true;
}
return false;
}
// 获取当前状态的所有合法后继状态
public List<RiverCrossing> getSuccessors() {
List<RiverCrossing> successors = new ArrayList<RiverCrossing>();
if (boat) { // 船在右岸
if (missionaryRight > 0) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft, false, missionaryRight - 1, cannibalRight));
}
if (cannibalRight > 0) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft, false, missionaryRight, cannibalRight - 1));
}
if (missionaryRight > 0 && cannibalRight > 0) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft, false, missionaryRight - 1, cannibalRight - 1));
}
if (missionaryRight > 1) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft, false, missionaryRight - 2, cannibalRight));
}
if (cannibalRight > 1) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft, false, missionaryRight, cannibalRight - 2));
}
} else { // 船在左岸
if (missionaryLeft > 0) {
successors.add(new RiverCrossing(missionaryLeft - 1, cannibalLeft, true, missionaryRight, cannibalRight));
}
if (cannibalLeft > 0) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft - 1, true, missionaryRight, cannibalRight));
}
if (missionaryLeft > 0 && cannibalLeft > 0) {
successors.add(new RiverCrossing(missionaryLeft - 1, cannibalLeft - 1, true, missionaryRight, cannibalRight));
}
if (missionaryLeft > 1) {
successors.add(new RiverCrossing(missionaryLeft - 2, cannibalLeft, true, missionaryRight, cannibalRight));
}
if (cannibalLeft > 1) {
successors.add(new RiverCrossing(missionaryLeft, cannibalLeft - 2, true, missionaryRight, cannibalRight));
}
}
List<RiverCrossing> validSuccessors = new ArrayList<RiverCrossing>();
for (RiverCrossing successor : successors) {
if (successor.isValid()) {
validSuccessors.add(successor);
}
}
return validSuccessors;
}
// 打印当前状态
public void print() {
System.out.println("Left:" + missionaryLeft + "M " + cannibalLeft + "C");
System.out.println("Right:" + missionaryRight + "M " + cannibalRight + "C");
String boatSide = boat ? "Right" : "Left";
System.out.println("Boat is at " + boatSide + " side.");
System.out.println();
}
}
```
然后,在主函数中,可以使用深度优先搜索来求解问题:
```java
import java.util.HashSet;
import java.util.Stack;
public class Main {
public static void main(String[] args) {
RiverCrossing initialState = new RiverCrossing(3, 3, false, 0, 0);
Stack<RiverCrossing> stack = new Stack<RiverCrossing>();
HashSet<RiverCrossing> visited = new HashSet<RiverCrossing>();
stack.push(initialState);
visited.add(initialState);
while (!stack.isEmpty()) {
RiverCrossing currentState = stack.pop();
if (currentState.isGoal()) {
currentState.print();
break;
}
for (RiverCrossing successorState : currentState.getSuccessors()) {
if (!visited.contains(successorState)) {
stack.push(successorState);
visited.add(successorState);
}
}
}
}
}
```
这样,就可以得到所有合法的状态,并输出最终的解法。
阅读全文