a,b=input().split() sum=0 lena=len(a) lenb=len(b) for x in range(lena) : sum+=int(a[lena-1-x])*pow(2,x) for x in range(lenb) : sum+=int(b[lenb-1-x])*pow(2,x) print(bin(sum)[2:])
时间: 2023-11-22 09:04:12 浏览: 38
这段代码是一个将输入的两个二进制数相加并输出结果的程序。代码具体解释如下:
- 首先通过 input().split() 从标准输入中读取两个二进制数 a 和 b。
- 然后定义一个变量 sum 并初始化为 0,用于存储两个二进制数相加后的十进制结果。
- 接下来分别计算两个二进制数的长度 lena 和 lenb。
- 然后通过 for 循环遍历每个二进制数的每一位,将其转换为十进制并加到 sum 变量中。具体实现是通过 pow(2,x) 计算 2 的 x 次方,然后乘以对应二进制位的值。
- 最后将 sum 转换为二进制字符串并输出。
需要注意的是,在第 1 行代码中应该加上一个等号,即应该为 a,b = input().split()。
相关问题
解释代码import numpy as np import matplotlib.pyplot as plt # plt 用于显示图片 import matplotlib.image as mpimg # mpimg 用于读取图片 fig = plt.figure() #matplotlib只支持PNG图像 lena = mpimg.imread('cat.jpg') lena_r=np.zeros(lena.shape) #0通道 lena_r[:,:,0]=lena[:,:,0] ax1=fig.add_subplot(331) ax1.imshow(lena_r)# 显示R通道 lena_g=np.zeros(lena.shape)#1通道 lena_g[:,:,1]=lena[:,:,1] ax4=fig.add_subplot(334) ax4.imshow(lena_g)# 显示G通道 lena_b=np.zeros(lena.shape)#2通道 lena_b[:,:,2]=lena[:,:,2] ax7=fig.add_subplot(337) ax7.imshow(lena_b)# 显示B通道 img_R = lena_r[:,:,0] R_mean=np.mean(img_R) R_std=np.std(img_R) ax2=fig.add_subplot(332) flatten_r=img_R.flatten() weights = np.ones_like(flatten_r)/float(len(flatten_r)) prob_r,bins_r,_=ax2.hist(flatten_r,bins=10,facecolor='r',weights=weights) img_G = lena_g[:,:,1] G_mean=np.mean(img_G) G_std=np.std(img_G) ax5=fig.add_subplot(335) flatten_g=img_G.flatten() prob_g,bins_g,_=ax5.hist(flatten_g,bins=10,facecolor='g',weights=weights) img_B = lena_b[:,:,2] B_mean=np.mean(img_B) B_std=np.std(img_B) ax8=fig.add_subplot(338) flatten_b=img_B.flatten() prob_b,bins_b,_=ax8.hist(flatten_b,bins=10,facecolor='b',weights=weights) ax3=fig.add_subplot(233) rgb_mean=[R_mean,G_mean,B_mean] x_mlabel=['R_mean','G_mean','B_mean'] bar_width=0.5 bars_mean=ax3.bar(x_mlabel,rgb_mean,width=bar_width) colors=['r','g','b'] for bar,color in zip(bars_mean,colors): bar.set_color(color) ax3.set_title('Mean') ax9 = fig.add_subplot(236) rgb_std =[R_std,G_std,B_std] x_mlabel = ['R_std','G_std','B_std'] bar_width = 0.5 bars_std = ax9.bar(x_mlabel,rgb_std,width = bar_width) colors = ['r','g','b'] for bar,color in zip(bars_std,colors): bar.set_color(color) ax9.set_title('Std') # fig.set_tight_layout(True) plt.show()
这段代码主要是读取一张名为"cat.jpg"的图片,并对其RGB三个通道进行分析和统计。
首先,将原图的RGB三个通道分别提取出来,然后在左上角、左中和左下角用subplot展示三个通道的图像。
接着,分别计算每个通道的像素值的均值和标准差,并在右上角用subplot展示三个通道的均值柱状图,右下角用subplot展示三个通道的标准差柱状图。
最后,用plt.show()将所有的子图展示出来。
import numpy as np import matplotlib.pyplot as plt import pywt from skimage import io, color # 读取灰度图像并转换为RGB图像 img_gray = io.imread('lena.png', as_gray=True) img = color.gray2rgb(img_gray) # 对图像的三个通道进行DWT变换 coeffs_r = pywt.dwt2(img[:, :, 0], 'haar') coeffs_g = pywt.dwt2(img[:, :, 1], 'haar') coeffs_b = pywt.dwt2(img[:, :, 2], 'haar') # 设置压缩比率 compress_ratio = 0.5 # 计算阈值 threshold_r = np.sort(np.abs(coeffs_r[1].ravel()))[::-1][int(compress_ratio * len(coeffs_r[1].ravel()))] threshold_g = np.sort(np.abs(coeffs_g[1].ravel()))[::-1][int(compress_ratio * len(coeffs_g[1].ravel()))] threshold_b = np.sort(np.abs(coeffs_b[1].ravel()))[::-1][int(compress_ratio * len(coeffs_b[1].ravel()))] # 对小于阈值的系数进行置零 coeffs_r = list(coeffs_r) coeffs_r[0] = np.round(coeffs_r[0]) coeffs_r[1] = np.where(np.abs(coeffs_r[1]) < threshold_r, 0, coeffs_r[1]) coeffs_r[2] = np.where(np.abs(coeffs_r[2]) < threshold_r, 0, coeffs_r[2]) coeffs_g = list(coeffs_g) coeffs_g[0] = np.round(coeffs_g[0]) coeffs_g[1] = np.where(np.abs(coeffs_g[1]) < threshold_g, 0, coeffs_g[1]) coeffs_g[2] = np.where(np.abs(coeffs_g[2]) < threshold_g, 0, coeffs_g[2]) coeffs_b = list(coeffs_b) coeffs_b[0] = np.round(coeffs_b[0]) coeffs_b[1] = np.where(np.abs(coeffs_b[1]) < threshold_b, 0, coeffs_b[1]) coeffs_b[2] = np.where(np.abs(coeffs_b[2]) < threshold_b, 0, coeffs_b[2]) # 合并三个通道的系数 coeffs = [np.stack([coeffs_r[i], coeffs_g[i], coeffs_b[i]], axis=-1) for i in range(len(coeffs_r))] # 对图像进行IDWT反变换 img_dwt = pywt.idwt2(coeffs, 'haar') # 显示原始图像和压缩后的图像 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax = axes.ravel() ax[0].imshow(img) ax[0].set_title("Original image") ax[1].imshow(img_dwt) ax[1].set_title("Compressed image (DWT)") ax[1].set_xlabel("Compression ratio: {:.2f}".format(compress_ratio)) plt.tight_layout() plt.show()
这段代码缺少了两行,分别是导入numpy和matplotlib.pyplot两个模块的语句。请在代码的开头添加以下两行语句:
```
import numpy as np
import matplotlib.pyplot as plt
```
这样就可以解决代码中的报错。
阅读全文