GCN的PyTorch实现
时间: 2024-06-09 16:06:44 浏览: 176
GC(Graph Convolutional Network)是一种用于图数据的深度学习模型,它可以用于节点分类、图分类和链接预测等任务。下面是GCN的PyTorch实现示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GCN(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(GCN, self).__init__()
self.conv1 = GCNConv(in_features, hidden_features)
self.conv2 = GCNConv(hidden_features, out_features)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
return x
```
在这个示例代码中,GCN模型定义了两个GCNConv层,这是GCN的核心操作,用于更新节点的特征。通过调用forward方法,可以将节点特征x和边的索引edge_index作为输入,然后返回更新后的节点特征。
阅读全文