使用pytorch实现gcn图像分类代码
时间: 2023-02-28 21:08:54 浏览: 128
下面是一个使用 PyTorch 实现 GCN 进行图像分类的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GCN(nn.Module):
def __init__(self, in_channels, out_channels, use_bias=True):
super(GCN, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.use_bias = use_bias
self.weight = nn.Parameter(torch.Tensor(in_channels, out_channels))
if self.use_bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.use_bias:
nn.init.zeros_(self.bias)
def forward(self, x, adj):
h = torch.matmul(x, self.weight)
h = torch.matmul(adj, h)
if self.use_bias:
h = h + self.bias
return h
class GCNClassifier(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, use_bias=True):
super(GCNClassifier, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(GCN(in_channels, hidden_channels, use_bias))
for _ in range(num_layers - 2):
self.layers.append(GCN(hidden_channels, hidden_channels, use_bias))
self.layers.append(GCN(hidden_channels, out_channels, use_bias))
def forward(self, x, adj):
for layer in self.layers:
x = F.relu(layer(x, adj))
return x
model = GCNClassifier(in_channels=128, hidden_channels=64, out_channels=10, num_layers=4)
```
在这个示例代码中,我们首先定义了一个 GCN 类,它实现了图卷积操作;接着我们定义了 GCNClassifier 类,它使用了多个 GCN 层,并通过最后一层输出图像的分类
相关推荐
















