path=r'C:\\Users\\85467\\\\Desktop\\zuoye2.xlsx' wave_height=data['SE向年极值H1/10(m)']

时间: 2024-04-03 21:29:41 浏览: 165
根据你提供的代码,path是一个字符串变量,表示文件路径。wave_height是一个变量,可能是一个DataFrame中的某一列数据。假设data是一个DataFrame对象,你可以使用pandas库来读取Excel文件并获取指定列的数据。 以下是一个可能的实现方式: ```python import pandas as pd # 读取Excel文件 data = pd.read_excel(r'C:\\Users\\85467\\\\Desktop\\zuoye2.xlsx') # 获取指定列的数据 wave_height = data['SE向年极值H1/10(m)'] ``` 请注意,路径中的双斜杠(\\)是为了转义单个斜杠(\)。在字符串前面加上字母r表示原始字符串,可以避免转义字符的影响。
相关问题

请写出以下代码的设计思路及设计步骤设计思路:import jieba import wordcloud import matplotlib.pyplot as plt import numpy as np from PIL import Image mask = np.array(Image.open(r"C:\Users\28243\Desktop\zuoye\image.png")) img_array = np.array(mask) file = open(r"C:\Users\28243\Desktop\zuoye\i love china.txt", "r", encoding="utf-8") t = file.read() file.close() ls = jieba.lcut(t) txt = " ".join(ls) # 设置词云图 w = wordcloud.WordCloud( font_path="C:/Windows/Fonts/SIMSUN.TTC", # 词云字体 width=2400, # 图片宽度 height=2000, # 图片高度 contour_width=2, mask = img_array, contour_color='steelblue', background_color="white") # 图片背景颜色 # 将文字导入词云 w.generate(txt) # 保存词云图 w.to_file("wordcloud_19.png")

设计思路: 1. 导入所需的库,包括jieba、wordcloud、matplotlib.pyplot、numpy和PIL.Image。 2. 定义一个变量mask,通过PIL库中的Image.open()函数打开一张图片作为词云的形状遮罩。 3. 将mask转换为一个NumPy数组,存储在img_array变量中。 4. 使用open函数打开一个文本文件,读取其中的内容,并将文件对象赋值给file变量。 5. 使用read()方法读取文件内容,并将结果赋值给变量t。 6. 关闭文件。 7. 使用jieba库的lcut()方法对文本进行分词,将结果存储在ls变量中。 8. 使用空格将ls中的词语连接成一个字符串,将结果赋值给txt变量。 9. 创建一个WordCloud对象w,设置词云的相关参数,包括字体路径、图片宽度、图片高度、轮廓宽度、遮罩形状、轮廓颜色和背景颜色。 10. 将txt导入词云对象w中,生成词云图。 11. 使用to_file()方法将词云图保存为一张图片。 设计步骤: 1. 导入所需的库:import jieba、import wordcloud、import matplotlib.pyplot as plt、import numpy as np和from PIL import Image。 2. 定义一个变量mask,并使用np.array()函数将通过Image.open()函数打开的图片转换为NumPy数组存储在mask中。 3. 将mask赋值给img_array变量,以备后续使用。 4. 使用open函数打开指定路径下的文本文件,并将文件对象赋值给file变量。 5. 使用read()方法读取文件内容,并将结果赋值给变量t。 6. 关闭文件,使用file.close()。 7. 使用jieba库的lcut()方法对变量t进行分词,将结果存储在ls变量中。 8. 使用空格将ls中的词语连接成一个字符串,将结果赋值给txt变量。 9. 创建一个WordCloud对象w,并设置相关参数,包括字体路径、图片宽度、图片高度、轮廓宽度、遮罩形状、轮廓颜色和背景颜色。 10. 将txt导入词云对象w中,生成词云图,使用w.generate(txt)。 11. 使用to_file()方法将词云图保存为一张图片,保存路径为"wordcloud_19.png"。

File "D:/PycharmProjects/pythonProject1/first/test1/zuoye1.py", line 79, in linear_model1 plt.title(f"The predicted values of test samples in LinearRegression\nRMSE = {rmse:.2f}, " TypeError: unsupported format string passed to numpy.ndarray.__format__

这个错误是由于在使用`plt.title()`函数时,将numpy数组作为参数传递给了格式化字符串,而numpy数组不支持格式化字符串的操作。您可以通过将numpy数组转换为标准的Python列表或元组来解决这个问题。 例如,如果`rmse`是一个numpy数组,您可以使用`rmse.tolist()`方法将其转换为列表,然后将转换后的列表作为参数传递给格式化字符串,如下所示: ```python plt.title("The predicted values of test samples in LinearRegression\nRMSE = {:.2f}, ".format(rmse.tolist()) + "estimator.coef_ = {:.2f}%, {:.2f}%, {:.2f}%, {:.2f}%, ".format(estimator.coef_[0][1][2][3], estimator.coef_[0][1][2][3], estimator.coef_[0][1][2][3], estimator.coef_[0][1][2][3]) + "estimator.intercept_ = {:.2f}%".format(estimator.intercept_[0])) ``` 这样就可以正确地将RMSE、回归系数和偏置系数等信息添加到图表的标题中了。
阅读全文

相关推荐

36085 WARNING: lib not found: c10.dll dependency of D:\python\lib\site-packages\torchvision\_C.pyd 36099 WARNING: lib not found: torch_cpu.dll dependency of D:\python\lib\site-packages\torchvision\_C.pyd 36113 WARNING: lib not found: c10_cuda.dll dependency of D:\python\lib\site-packages\torchvision\_C.pyd 36127 WARNING: lib not found: torch_cuda_cpp.dll dependency of D:\python\lib\site-packages\torchvision\_C.pyd 36146 WARNING: lib not found: torch_python.dll dependency of D:\python\lib\site-packages\torch\_C_flatbuffer.cp37-win_amd64.pyd 36287 WARNING: lib not found: torch_python.dll dependency of D:\python\lib\site-packages\torch\_C.cp37-win_amd64.pyd 37214 WARNING: lib not found: api-ms-win-security-systemfunctions-l1-1-0.dll dependency of D:\python\lib\site-packages\torchvision\cudart64_110.dll 326321 INFO: Looking for eggs 326578 INFO: Using Python library D:\python\python37.dll 326578 INFO: Found binding redirects: [] 326631 INFO: Warnings written to D:\python-zuoye\pythonProject_001\build\main\warn-main.txt 327409 INFO: Graph cross-reference written to D:\python-zuoye\pythonProject_001\build\main\xref-main.html 327899 INFO: checking PYZ 327900 INFO: Building PYZ because PYZ-00.toc is non existent 327901 INFO: Building PYZ (ZlibArchive) D:\python-zuoye\pythonProject_001\build\main\PYZ-00.pyz 334452 INFO: Building PYZ (ZlibArchive) D:\python-zuoye\pythonProject_001\build\main\PYZ-00.pyz completed successfully. 334974 INFO: checking PKG 334974 INFO: Building PKG because PKG-00.toc is non existent 334975 INFO: Building PKG (CArchive) main.pkg

from sklearn.naive_bayes import BernoulliNB,MultinomialNB from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split import pandas as pd path = 'E:/Python_file/zuoye/SMSSpamCollection.txt' Cnames=['labels','messages'] data = pd.read_csv(path,sep='\t', header=None, names=Cnames) #读取数据集,分隔符是\t data=data.replace({'ham':0,'spam':1}) #替换标签值 print('数据集展示:') print(data) print('\n----------------------------------\n') X=data['messages'] y=data['labels'] x_train,x_test,y_train,y_test=train_test_split(X,y,train_size=0.8,random_state=123) vector_nomial=CountVectorizer() #实现词袋模型 vector_bernou=CountVectorizer() #多项式模型分类垃圾短信 train_matrix=vector_nomial.fit_transform(x_train) test_matrix=vector_nomial.transform(x_test) polynomial=MultinomialNB() clm_nomial=polynomial.fit(train_matrix,y_train) result_nomial=clm_nomial.predict(test_matrix) #伯努利模型分类垃圾短信 train_matrix=vector_bernou.fit_transform(x_train) test_matrix=vector_bernou.transform(x_test) Bernoulli=BernoulliNB() clm_bernoulli=Bernoulli.fit(train_matrix,y_train) result_bernou=clm_bernoulli.predict(test_matrix) print('多项式模型的预测结果,类型,长度:') print(result_nomial,type(result_nomial),result_nomial.shape) print('多项式模型的前一百个预测结果:') print(result_nomial[0:100]) print('多项式模型模型R²评分:'+ str(clm_nomial.score(test_matrix,y_test))) print('\n----------------------------------\n') print('伯努利模型的预测结果,类型,长度:') print(result_bernou,type(result_bernou),result_bernou.shape) print('伯努利模型的前一百个预测结果:') print(result_bernou[0:100]) print('伯努利模型R²评分:'+ str(clm_bernoulli.score(test_matrix,y_test)))

KeyError Traceback (most recent call last) Cell In[17], line 1 ----> 1 data = data.drop(['125','125.1'],axis=1) 2 data File D:\anaconda\envs\zuoye\lib\site-packages\pandas\core\frame.py:5268, in DataFrame.drop(self, labels, axis, index, columns, level, inplace, errors) 5120 def drop( 5121 self, 5122 labels: IndexLabel = None, (...) 5129 errors: IgnoreRaise = "raise", 5130 ) -> DataFrame | None: 5131 """ 5132 Drop specified labels from rows or columns. 5133 (...) 5266 weight 1.0 0.8 5267 """ -> 5268 return super().drop( 5269 labels=labels, 5270 axis=axis, 5271 index=index, 5272 columns=columns, 5273 level=level, 5274 inplace=inplace, 5275 errors=errors, 5276 ) File D:\anaconda\envs\zuoye\lib\site-packages\pandas\core\generic.py:4549, in NDFrame.drop(self, labels, axis, index, columns, level, inplace, errors) 4547 for axis, labels in axes.items(): 4548 if labels is not None: -> 4549 obj = obj._drop_axis(labels, axis, level=level, errors=errors) 4551 if inplace: 4552 self._update_inplace(obj) File D:\anaconda\envs\zuoye\lib\site-packages\pandas\core\generic.py:4591, in NDFrame._drop_axis(self, labels, axis, level, errors, only_slice) 4589 new_axis = axis.drop(labels, level=level, errors=errors) 4590 else: -> 4591 new_axis = axis.drop(labels, errors=errors) 4592 indexer = axis.get_indexer(new_axis) 4594 # Case for non-unique axis 4595 else: File D:\anaconda\envs\zuoye\lib\site-packages\pandas\core\indexes\base.py:6696, in Index.drop(self, labels, errors) 6694 if mask.any(): 6695 if errors != "ignore": -> 6696 raise KeyError(f"{list(labels[mask])} not found in axis") 6697 indexer = indexer[~mask] 6698 return self.delete(indexer) KeyError: "['125', '125.1'] not found in axis"

最新推荐

recommend-type

基于Qt开发的截图工具- 支持全屏截图, 支持自定义截图,支持捕获窗口截图,支持固定大小窗口截图,颜色拾取,图片编辑

基于Qt开发的截图工具.zip 截图工具(QScreenShot) Qt编写的一款截图工具。 特点 - 支持全屏截图 - 支持自定义截图 - 支持捕获窗口截图 - 支持固定大小窗口截图 - 颜色拾取 - 图片编辑 - 图片上传到wordpress 环境 Qt6.2 QtCreate 8
recommend-type

毕业设计&课设_ 校园活动管理系统,优化校园活动组织流程,涵盖多方面功能模块的便捷平台.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

毕业设计基于ASP.NET技术的班级展示网站构建(源代码+论文).zip

基于ASP.NET技术的班级展示网站构建资源,是一套针对教育机构或学生团体,旨在通过ASP.NET框架开发班级风采展示平台的指导资料或教程。此资源详细介绍了如何利用ASP.NET的强大功能,快速搭建一个功能完善、界面友好的在线班级展示平台。 该资源涵盖了从需求分析、数据库设计、前端页面制作到后端逻辑实现的全过程。通过实例演示,指导用户如何设置班级信息、学生风采展示、活动公告、图片上传与浏览等核心功能模块。同时,结合ASP.NET的MVC架构,实现了前后端分离,提高了代码的可维护性和可扩展性。 此外,该资源还提供了丰富的代码示例和注释,帮助开发者深入理解ASP.NET框架的工作原理,掌握如何运用其强大的数据库操作、用户认证与授权等特性。对于初学者来说,这是一份难得的入门教程;而对于有一定经验的开发者,则是一份提升技能的参考资料。 总之,基于ASP.NET技术的班级展示网站构建资源,是教育机构和学生团体实现班级风采在线展示的理想选择,也是开发者学习ASP.NET框架应用的宝贵资源。
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Keras正则化技术应用:L1_L2与Dropout的深入理解

![Keras正则化技术应用:L1_L2与Dropout的深入理解](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. Keras正则化技术概述 在机器学习和深度学习中,正则化是一种常用的技术,用于防止模型过拟合。它通过对模型的复杂性施加