TD3 python

时间: 2023-11-10 14:03:21 浏览: 54
TD3 (Twin Delayed DDPG)是一种用于连续控制问题的深度强化学习算法,它在DDPG的基础上进行了改进。TD3的主要特点有: 1. 双Q网络:TD3使用两个Q网络作为目标网络,以减少过估计问题。 2. 延迟更新:TD3将Actor和Critic的更新分开,以减少价值函数的震荡。 3. 目标策略噪声:TD3在Actor策略网络的输出中加入随机噪声,并对目标策略值进行裁剪,以促进探索性行为。 4. 自适应调节:TD3在训练过程中自适应调节目标策略值和噪声的系数。 在实践中,TD3已被证明在连续控制问题中具有较好的性能表现。
相关问题

python强化学习的TD3

TD3是一种强化学习算法,全称为Twin Delayed Deep Deterministic Policy Gradient。它是DDPG算法的改进版,主要解决了DDPG算法的一些问题,如过度估计和不稳定性等。TD3算法的核心思想是使用两个Q网络来减少过度估计的影响,并且使用延迟更新策略来提高算法的稳定性。 具体来说,TD3算法使用两个Q网络来估计动作值函数,其中一个Q网络用于选择动作,另一个Q网络用于评估动作。这样可以减少过度估计的影响,提高算法的稳定性。此外,TD3算法还使用了延迟更新策略,即每隔一定时间才更新目标Q网络和策略网络,这样可以使得算法更加稳定。

基于TD3的SAC

以下是基于TD3的SAC算法的简单实现,使用Python和TensorFlow框架: ```python import tensorflow as tf import numpy as np class TD3_SAC: def __init__(self, state_dim, action_dim, max_action): self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action # Actor network self.actor = self.build_actor_network() self.actor_target = self.build_actor_network() self.actor_target.set_weights(self.actor.get_weights()) # Critic networks self.critic_1 = self.build_critic_network() self.critic_2 = self.build_critic_network() self.critic_1_target = self.build_critic_network() self.critic_2_target = self.build_critic_network() self.critic_1_target.set_weights(self.critic_1.get_weights()) self.critic_2_target.set_weights(self.critic_2.get_weights()) # Replay buffer self.buffer = ReplayBuffer() # Hyperparameters self.gamma = 0.99 self.tau = 0.005 self.alpha = 0.2 self.policy_noise = 0.2 * self.max_action self.noise_clip = 0.5 * self.max_action self.policy_freq = 2 self.batch_size = 256 # Optimizers self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4) self.critic_optimizer_1 = tf.keras.optimizers.Adam(learning_rate=3e-4) self.critic_optimizer_2 = tf.keras.optimizers.Adam(learning_rate=3e-4) def build_actor_network(self): inputs = tf.keras.layers.Input(shape=(self.state_dim,)) x = tf.keras.layers.Dense(256, activation='relu')(inputs) x = tf.keras.layers.Dense(256, activation='relu')(x) outputs = tf.keras.layers.Dense(self.action_dim, activation='tanh')(x) outputs = outputs * self.max_action return tf.keras.Model(inputs=inputs, outputs=outputs) def build_critic_network(self): state_inputs = tf.keras.layers.Input(shape=(self.state_dim,)) action_inputs = tf.keras.layers.Input(shape=(self.action_dim,)) x = tf.keras.layers.Concatenate()([state_inputs, action_inputs]) x = tf.keras.layers.Dense(256, activation='relu')(x) x = tf.keras.layers.Dense(256, activation='relu')(x) outputs = tf.keras.layers.Dense(1)(x) return tf.keras.Model(inputs=[state_inputs, action_inputs], outputs=outputs) def select_action(self, state): state = np.expand_dims(state, axis=0) action = self.actor(state).numpy()[0] return action def train(self): if len(self.buffer) < self.batch_size: return state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.buffer.sample(self.batch_size) # Target actions next_action_batch = self.actor_target(next_state_batch).numpy() noise = np.random.normal(0, self.policy_noise, size=next_action_batch.shape) noise = np.clip(noise, -self.noise_clip, self.noise_clip) next_action_batch = next_action_batch + noise next_action_batch = np.clip(next_action_batch, -self.max_action, self.max_action) # Target Q values q1_target = self.critic_1_target([next_state_batch, next_action_batch]).numpy() q2_target = self.critic_2_target([next_state_batch, next_action_batch]).numpy() q_target = np.minimum(q1_target, q2_target) q_target = reward_batch + (1 - done_batch) * self.gamma * q_target # Update critics with tf.GradientTape(persistent=True) as tape: q1 = self.critic_1([state_batch, action_batch]) q2 = self.critic_2([state_batch, action_batch]) critic_loss_1 = tf.reduce_mean(tf.square(q1 - q_target)) critic_loss_2 = tf.reduce_mean(tf.square(q2 - q_target)) grad_1 = tape.gradient(critic_loss_1, self.critic_1.trainable_variables) grad_2 = tape.gradient(critic_loss_2, self.critic_2.trainable_variables) self.critic_optimizer_1.apply_gradients(zip(grad_1, self.critic_1.trainable_variables)) self.critic_optimizer_2.apply_gradients(zip(grad_2, self.critic_2.trainable_variables)) # Update actor with tf.GradientTape() as tape: policy_action = self.actor(state_batch) actor_loss = -tf.reduce_mean(self.critic_1([state_batch, policy_action])) actor_loss += self.alpha * tf.reduce_mean(tf.math.log(self.actor(state_batch) + 1e-6)) grad = tape.gradient(actor_loss, self.actor.trainable_variables) self.actor_optimizer.apply_gradients(zip(grad, self.actor.trainable_variables)) # Update target networks self.actor_target.set_weights(self.tau * np.array(self.actor.get_weights()) + (1 - self.tau) * np.array(self.actor_target.get_weights())) self.critic_1_target.set_weights(self.tau * np.array(self.critic_1.get_weights()) + (1 - self.tau) * np.array(self.critic_1_target.get_weights())) self.critic_2_target.set_weights(self.tau * np.array(self.critic_2.get_weights()) + (1 - self.tau) * np.array(self.critic_2_target.get_weights())) def save_model(self, path): self.actor.save_weights(path + 'actor') self.actor_target.save_weights(path + 'actor_target') self.critic_1.save_weights(path + 'critic_1') self.critic_2.save_weights(path + 'critic_2') self.critic_1_target.save_weights(path + 'critic_1_target') self.critic_2_target.save_weights(path + 'critic_2_target') def load_model(self, path): self.actor.load_weights(path + 'actor') self.actor_target.load_weights(path + 'actor_target') self.critic_1.load_weights(path + 'critic_1') self.critic_2.load_weights(path + 'critic_2') self.critic_1_target.load_weights(path + 'critic_1_target') self.critic_2_target.load_weights(path + 'critic_2_target') ``` 在这个代码中,我们定义了一个名为`TD3_SAC`的类,它包括了一个actor网络,两个critic网络(分别对应Q1和Q2),以及它们各自的target网络。我们还定义了一个replay buffer,用于存储样本。 在训练过程中,我们首先从replay buffer中采样一批样本,并计算目标Q值和目标动作。然后,我们使用这些样本更新critic网络的参数。接下来,我们使用actor网络和当前状态计算出一个动作,并用critic网络计算出该动作的Q值。我们使用这个Q值更新actor网络的参数。最后,我们使用soft更新方法更新target网络的参数。 在实践中,您可能需要根据您的具体问题调整超参数,以获得更好的性能。除此之外,您还可以使用其他技巧,如延迟更新、target policy smoothing等,以进一步改进算法的性能。

相关推荐

最新推荐

recommend-type

30天学会医学统计学你准备好了吗

30天学会医学统计学你准备好了吗,暑假两个月总得学点东西吧,医学生们最需要的,冲啊
recommend-type

213ssm_mysql_jsp 图书仓储管理系统_ruoyi.zip(可运行源码+sql文件+文档)

根据需求,确定系统采用JSP技术,SSM框架,JAVA作为编程语言,MySQL作为数据库。整个系统要操作方便、易于维护、灵活实用。主要实现了人员管理、库位管理、图书管理、图书报废管理、图书退回管理等功能。 本系统实现一个图书仓储管理系统,分为管理员、仓库管理员和仓库操作员三种用户。具体功能描述如下: 管理员模块包括: 1. 人员管理:管理员可以对人员信息进行添加、修改或删除。 2. 库位管理:管理员可以对库位信息进行添加、修改或删除。 3. 图书管理:管理员可以对图书信息进行添加、修改、删除、入库或出库。 4. 图书报废管理:管理员可以对报废图书信息进行管理。 5. 图书退回管理:管理员可以对退回图书信息进行管理。 仓库管理员模块包括;1. 人员管理、2. 库位管理、3. 图书管理、4. 图书报废管理、5. 图书退回管理。 仓库操作员模块包括: 1. 图书管理:仓库操作员可以对图书进行入库或出库。 2. 图书报废管理:仓库操作员可以对报废图书信息进行管理。 3. 图书退回管 关键词:图书仓储管理系统; JSP; MYSQL 若依框架 ruoyi
recommend-type

城市二次供水智慧化运行管理经验分享

城市二次供水智慧化运行管理是指利用现代信息技术,如物联网(IoT)、大数据、云计算、人工智能等,对城市二次供水系统进行智能化改造和优化管理,以提高供水效率、保障水质安全、降低运营成本和提升服务质量。以下是一些智慧化运行管理的经验: 1. 智能监测与数据采集 传感器部署:在二次供水系统中部署各种传感器,如流量计、压力计、水质监测设备等,实时收集关键数据。 数据集成:将来自不同设备和系统的数据集成到一个统一的平台,便于管理和分析。 2. 大数据分析与决策支持 数据分析:利用大数据技术对收集到的数据进行分析,识别异常模式,预测潜在问题。 决策支持:通过数据分析结果,为运营管理人员提供决策支持,如优化供水调度、预测维护需求等。 3. 自动化控制与优化 自动化系统:实现供水泵站、阀门等设备的自动化控制,根据实时数据自动调整运行参数。 优化算法:应用优化算法,如遗传算法、神经网络等,对供水系统进行优化,提高能效和减少浪费。 4. 云计算与远程管理 云平台:将数据存储和处理迁移到云平台,实现数据的远程访问和共享。 远程监控:通过云平台实现对二次供水系统的远程监控和管理,提高响应速度和灵活性。
recommend-type

mysql选择1232

mysql选择1232
recommend-type

《Java编程思想》学习笔记1(操作符、控制语句、对象、初始化与清理).doc

《Java编程思想》学习笔记1(操作符、控制语句、对象、初始化与清理).doc
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。