启发式搜索Python
时间: 2023-11-19 09:52:34 浏览: 127
人工智能 启发式搜索 python
启发式搜索(Heuristic Search)是一种基于估价函数的搜索算法,它可以在大规模的状态空间中找到最优解或者近似最优解。在Python中,我们可以使用A*算法来实现启发式搜索。
A*算法是一种启发式搜索算法,它通过估价函数来评估每个状态的优先级,并选择优先级最高的状态进行扩展。估价函数通常是由两部分组成:启发式函数和代价函数。启发式函数用来估计当前状态到目标状态的距离,代价函数用来估计从起始状态到当前状态的代价。
以下是一个简单的A*算法实现:
```python
def astar(start, goal, h_func, cost_func):
open_set = {start}
closed_set = set()
g_score = {start: 0}
f_score = {start: h_func(start, goal)}
while open_set:
current = min(open_set, key=lambda x: f_score[x])
if current == goal:
return reconstruct_path(current)
open_set.remove(current)
closed_set.add(current)
for neighbor in get_neighbors(current):
if neighbor in closed_set:
continue
tentative_g_score = g_score[current] + cost_func(current, neighbor)
if neighbor not in open_set or tentative_g_score < g_score[neighbor]:
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + h_func(neighbor, goal)
if neighbor not in open_set:
open_set.add(neighbor)
return None
```
其中,`start`和`goal`分别表示起始状态和目标状态,`h_func`和`cost_func`分别表示启发式函数和代价函数。`get_neighbors`函数用来获取当前状态的所有邻居状态,`reconstruct_path`函数用来重构路径。
阅读全文