R语言代码 将训练集和验证集的ROC合并在一张图并进行差异值分析
时间: 2024-10-11 08:16:14 浏览: 26
R语言实例基于Boston数据集的数据分析报告用logistic回归LDA线性
在R语言中,你可以使用`ggplot2`包来创建ROC曲线图,并结合`cowplot`或其他绘图工具进行合并和差异分析。下面是一个基本的例子,假设你已经计算好训练集和验证集的ROC数据(`train_fpr`, `train_tpr`)和`(val_fpr`, `val_tpr)`:
```r
# 首先安装并加载必要的包
if (!require("ggplot2")) install.packages("ggplot2")
if (!require("cowplot")) install.packages("cowplot")
# 计算ROC曲线数据
library(ggplot2)
# 假设这是训练集和验证集的真正率(fpr)和假正率(tpr)
train_data <- data.frame(fpr = train_fpr, tpr = train_tpr)
val_data <- data.frame(fpr = val_fpr, tpr = val_tpr)
# 创建ROC曲线图
train_plot <- ggplot(train_data, aes(x=fpr, y=tpr)) +
geom_line(color = "blue", alpha=0.8, linetype="dashed") +
labs(title = "Training Set ROC Curve", x = "False Positive Rate", y = "True Positive Rate")
val_plot <- ggplot(val_data, aes(x=fpr, y=tpr)) +
geom_line(color = "red", alpha=0.8) +
labs(title = "Validation Set ROC Curve", x = "False Positive Rate", y = "True Positive Rate")
# 使用cowplot合并曲线
library(cowplot)
combined_plot <- plot_grid(train_plot, val_plot, labels=c("A", "B"))
# 可能需要手动调整空间以显示差异
combined_plot + theme(plot.margin = unit(c(2,2,2,2), "lines"))
# 对比两条曲线的AUC差异,可以使用pROC包
library(pROC)
train_auc <- roc(train_data$fpr, train_data$tpr)$auc
val_auc <- roc(val_data$fpr, val_data$tpr)$auc
auc_diff <- val_auc - train_auc
cat("AUC difference between training and validation set: ", auc_diff, "\n")
```
阅读全文