链表 quicksort

时间: 2024-08-17 09:00:14 浏览: 31
快速排序(Quicksort)是一种高效的排序算法,其基本思想是分而治之,通过一趟排序将待排记录分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据都要小,然后分别对这两部分再进行排序,整个排序过程递归进行,直到所有元素有序。 在链表上实现快速排序的主要挑战在于,链表不像数组那样可以直接访问任意位置的元素,所以我们不能像处理数组那样通过索引直接交换元素。但我们可以采用类似的方法: 1. **选择基准**:在链表中随机选择一个节点作为基准值pivot。 2. **分区操作**:遍历链表,找到小于基准的节点和大于基准的节点,分别放在两个新的链表中。这个过程可能需要创建新的链接节点,因为原链表不可修改。 3. **递归**:对小于基准的子链表和大于基准的子链表再次执行快速排序。 4. **合并**:最后,把排序后的两个子链表连接起来,并返回新形成的链表头节点。 由于链表操作涉及到节点移动而非简单的元素交换,所以快速排序的实现相比数组会稍微复杂一些,但它的时间复杂度依然保持在平均情况下为O(n log n)。
相关问题

c语言链表排序

链表排序一般采用归并排序或快速排序。 1. 归并排序 归并排序的基本思路是分治法,将链表分成若干个子链表,对每个子链表进行排序,然后合并子链表,直到最后只剩下一个有序链表。具体实现如下: ```c // 定义链表结构体 typedef struct ListNode { int val; struct ListNode *next; }ListNode; // 合并两个有序链表 ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) { if (l1 == NULL) return l2; if (l2 == NULL) return l1; ListNode *head = NULL; ListNode *tail = NULL; // 将较小的结点作为头结点 if (l1->val < l2->val) { head = l1; l1 = l1->next; } else { head = l2; l2 = l2->next; } // 遍历两个链表,依次取出较小的结点 tail = head; while (l1 != NULL && l2 != NULL) { if (l1->val < l2->val) { tail->next = l1; l1 = l1->next; } else { tail->next = l2; l2 = l2->next; } tail = tail->next; } // 将剩余结点接到尾部 if (l1 != NULL) { tail->next = l1; } else if (l2 != NULL) { tail->next = l2; } return head; } // 归并排序 ListNode* sortList(ListNode* head) { if (head == NULL || head->next == NULL) { return head; } // 快慢指针找到链表中点 ListNode *fast = head; ListNode *slow = head; while (fast->next != NULL && fast->next->next != NULL) { fast = fast->next->next; slow = slow->next; } // 将链表分成两个子链表 ListNode *head1 = head; ListNode *head2 = slow->next; slow->next = NULL; // 递归排序两个子链表 head1 = sortList(head1); head2 = sortList(head2); // 合并两个子链表,返回头结点 return mergeTwoLists(head1, head2); } ``` 2. 快速排序 快速排序的基本思路是选取一个元素作为基准值,将链表分成小于基准值和大于等于基准值的两部分,然后递归地对两部分进行快速排序。具体实现如下: ```c // 获取链表结点数量 int getListLength(ListNode *head) { int count = 0; while (head != NULL) { count++; head = head->next; } return count; } // 快速排序 ListNode* quickSort(ListNode *head, ListNode *tail) { if (head == NULL || head == tail) { return head; } // 将链表分成小于基准值和大于等于基准值的两部分 ListNode *pivot = head; ListNode *p = head; ListNode *q = head->next; while (q != tail) { if (q->val < pivot->val) { p = p->next; int tmp = p->val; p->val = q->val; q->val = tmp; } q = q->next; } int tmp = p->val; p->val = pivot->val; pivot->val = tmp; // 递归地对两部分进行快速排序 quickSort(head, p); quickSort(p->next, tail); return head; } // 快速排序入口函数 ListNode* sortList(ListNode* head) { int len = getListLength(head); return quickSort(head, NULL); } ```

链表快速排序的递归算法

链表快速排序的递归算法可以通过以下步骤实现: 1. 选择链表中的一个元素作为基准值(pivot)。 2. 将链表分成两个部分,一个部分包含所有小于等于基准值的元素,另一个部分包含所有大于基准值的元素。 3. 对两个部分分别进行递归排序。 4. 将排序后的两个部分连接起来,得到最终排序后的链表。 下面是一个示例代码: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def partition(head, end): pivot = head.val slow = head fast = head.next while fast != end: if fast.val < pivot: slow = slow.next slow.val, fast.val = fast.val, slow.val fast = fast.next slow.val, head.val = head.val, slow.val return slow def quickSort(head, end): if head != end: pivot = partition(head, end) quickSort(head, pivot) quickSort(pivot.next, end) def sortList(head): quickSort(head, None) return head ``` 这段代码中,`ListNode` 是链表节点的定义,`partition` 函数用于将链表分成两个部分,`quickSort` 函数用于递归排序,`sortList` 函数是入口函数,用于调用快速排序算法。

相关推荐

最新推荐

recommend-type

c语言学习之排序 数据结构 链表 堆排序 希尔排序 快速排序 递归排序

"C语言学习之排序数据结构链表堆...void QuickSort(int *intArr, int length) { qsort(intArr, 0, length - 1); } ``` 本资源提供了详细的排序算法原理、流程图和C语言代码实现,帮助读者更好地理解和掌握这些算法。
recommend-type

解决Eclipse配置与导入Java工程常见问题

"本文主要介绍了在Eclipse中配置和导入Java工程时可能遇到的问题及解决方法,包括工作空间切换、项目导入、运行配置、构建路径设置以及编译器配置等关键步骤。" 在使用Eclipse进行Java编程时,可能会遇到各种配置和导入工程的问题。以下是一些基本的操作步骤和解决方案: 1. **切换或创建工作空间**: - 当Eclipse出现问题时,首先可以尝试切换到新的工作空间。通过菜单栏选择`File > Switch Workspace > Other`,然后选择一个新的位置作为你的工作空间。这有助于排除当前工作空间可能存在的配置问题。 2. **导入项目**: - 如果你有现有的Java项目需要导入,可以选择`File > Import > General > Existing Projects into Workspace`,然后浏览并选择你要导入的项目目录。确保项目结构正确,尤其是`src`目录,这是存放源代码的地方。 3. **配置运行配置**: - 当你需要运行项目时,如果出现找不到库的问题,可以在Run Configurations中设置。在`Run > Run Configurations`下,找到你的主类,确保`Main class`设置正确。如果使用了`System.loadLibrary()`加载本地库,需要在`Arguments`页签的`VM Arguments`中添加`-Djava.library.path=库路径`。 4. **调整构建路径**: - 在项目上右键点击,选择`Build Path > Configure Build Path`来管理项目的依赖项。 - 在`Libraries`选项卡中,你可以添加JRE系统库,如果需要更新JRE版本,可以选择`Add Library > JRE System Library`,然后选择相应的JRE版本。 - 如果有外部的jar文件,可以在`Libraries`中选择`Add External Jars`,将jar文件添加到构建路径,并确保在`Order and Export`中将其勾选,以便在编译和运行时被正确引用。 5. **设置编译器兼容性**: - 在项目属性中,选择`Java Compiler`,可以设置编译器的兼容性级别。如果你的目标是Java 1.6,那么将`Compiler Compliance Level`设置为1.6。注意,不同的Java版本可能有不同的语法特性,因此要确保你的编译器设置与目标平台匹配。 这些步骤可以帮助解决Eclipse中常见的Java项目配置问题。当遇到错误时,记得检查每个环节,确保所有配置都符合你的项目需求。同时,保持Eclipse及其插件的更新,也可以避免很多已知的问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【错误处理与调试】:Python操作MySQL的常见问题与解决之道

![【错误处理与调试】:Python操作MySQL的常见问题与解决之道](https://www.devopsschool.com/blog/wp-content/uploads/2020/05/image-1.png) # 1. Python与MySQL交互基础 在当今的数据驱动世界中,Python与MySQL的交互变得尤为重要。作为一款广泛使用的动态编程语言,Python具有简洁明了的语法,且易于学习,它在数据分析、科学计算以及Web开发等多个领域中都表现出色。而MySQL作为流行的开源关系数据库管理系统,广泛应用于网站后端数据存储与管理。 首先,要实现Python与MySQL的交互,
recommend-type

#include<stdio.h> void main() { char c; scanf("%c",&c); print("%d\n",c); }

你提供的代码是C语言的简单程序,用于从标准输入读取一个字符,并试图打印该字符的ASCII码值。然而,程序中存在一个小错误。在C语言中,函数`printf`用于输出,而不是`print`。下面是修正后的代码: ```c #include<stdio.h> void main() { char c; scanf("%c", &c); printf("%d\n", c); } ``` 这段代码的作用如下: 1. 包含标准输入输出库`stdio.h`,它提供了输入输出函数的声明。 2. 定义`main`函数,它是每个C程序的入口点。 3. 声明一个`char`类型的变量`
recommend-type

真空发生器:工作原理与抽吸性能分析

"真空发生器是一种利用正压气源产生负压的设备,适用于需要正负压转换的气动系统,常见应用于工业自动化多个领域,如机械、电子、包装等。真空发生器主要通过高速喷射压缩空气形成卷吸流动,从而在吸附腔内制造真空。其工作原理基于流体力学的连续性和伯努利理想能量方程,通过改变截面面积和流速来调整压力,达到产生负压的目的。根据喷管出口的马赫数,真空发生器可以分为亚声速、声速和超声速三种类型,其中超声速喷管型通常能提供最大的吸入流量和最高的吸入口压力。真空发生器的主要性能参数包括空气消耗量、吸入流量和吸入口处的压力。" 真空发生器是工业生产中不可或缺的元件,其工作原理基于喷管效应,利用压缩空气的高速喷射,在喷管出口形成负压。当压缩空气通过喷管时,由于喷管截面的收缩,气流速度增加,根据连续性方程(A1v1=A2v2),截面增大导致流速减小,而伯努利方程(P1+1/2ρv1²=P2+1/2ρv2²)表明流速增加会导致压力下降,当喷管出口流速远大于入口流速时,出口压力会低于大气压,产生真空。这种现象在Laval喷嘴(先收缩后扩张的超声速喷管)中尤为明显,因为它能够更有效地提高流速,实现更高的真空度。 真空发生器的性能主要取决于几个关键参数: 1. 空气消耗量:这是指真空发生器从压缩空气源抽取的气体量,直接影响到设备的运行成本和效率。 2. 吸入流量:指设备实际吸入的空气量,最大吸入流量是在无阻碍情况下,吸入口直接连通大气时的流量。 3. 吸入口处压力:表示吸入口的真空度,是评估真空发生器抽吸能力的重要指标。 在实际应用中,真空发生器常与吸盘结合,用于吸附和搬运各种物料,特别是对易碎、柔软、薄的非铁非金属材料或球形物体,因其抽吸量小、真空度要求不高的特点而备受青睐。深入理解真空发生器的抽吸机理和影响其性能的因素,对于优化气路设计和选择合适的真空发生器具有重要意义,可以提升生产效率,降低成本,并确保作业过程的稳定性和可靠性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python多线程与MySQL:数据一致性和性能优化挑战的解决方案

![Python多线程与MySQL:数据一致性和性能优化挑战的解决方案](https://global.discourse-cdn.com/business6/uploads/python1/optimized/2X/8/8967d2efe258d290644421dac884bb29d0eea82b_2_1023x543.png) # 1. 多线程与MySQL基础 本章将探讨多线程编程与MySQL数据库的基础知识,为后续章节涉及的复杂主题打下坚实的理论基础。我们将首先了解线程的定义、作用以及如何在应用中实现多线程。随后,我们将介绍MySQL作为数据库系统的作用及其基本操作。 ## 1.1
recommend-type

DATEDIFF(u1.actmonth, t2.latest_usage) = 1

这个表达式`DATEDIFF(u1.actmonth, t2.latest_usage) = 1`是在比较两个日期之间的月差(假设`actmonth`字段表示第一个日期的月份,而`latest_usage`字段表示第二个日期的最新使用时间)。如果结果等于1,这意味着第一个日期比第二个日期晚了一个月。 具体来说,`DATEDIFF`通常是一个SQL函数,用于计算两个日期间的差异(在这种情况下是按月计数),如果`DATEDIFF(u1.actmonth, t2.latest_usage)`的结果为1,那意味着u1的活动发生在t2最近一次使用的日期之后一个月。 举个例子: ```sql SEL
recommend-type

爱立信RBS6201开站流程详解

"爱立信RBS6201开站流程" 爱立信RBS6201是一款用于移动通信的基站系统,主要用于提供2G GSM 900MHz频段的服务。开站流程是建立和配置这样一个站点的关键步骤,涉及到硬件安装、软件配置以及系统测试。以下是对该流程的详细解释: 1. **准备工作** - **工具准备**:确保拥有必要的工具,如安装OMT40F软件的笔记本电脑、CF卡读卡器、六角螺丝刀、发光二极管以及安装锁频软件的手机,这些都是进行安装和调试的基础。 - **知识准备**:了解RBS6201模块结构,例如Optix PTN950的相关知识,这有助于理解设备的内部工作原理。 - **相关制度**:遵守电信行业的安全规定和操作规程,确保操作的合规性。 2. **数据包模板制作** - 使用OMT软件创建IDB(Install Data Base),这是配置网络的基础。 - 配置Transmission Setup,选择E1接口,并在Cabinet Setup中设定机柜类型为6201RUS,电源系统通常为-48VDC,气候系统为标准设置。 - 定义Antenna Sector Setup,依据实际需求选择扇区数量、频率和RUS设置。 - 在TRX Mapping Setup中设置SiteCell Configuration,例如选择222。 - 通过RBS configuration wizard设定所有参数,包括SAU、RUS、DUG等的位置,SAU告警设置以及主从DUG配置。 3. **硬件检查** - **综合配线架**:检查传输线的连接,确保正确无误。 - **BTS配电**:验证电源供应,确保所有设备能够正常供电。 - **PTN**:确认PTN设备的配置与连接,它是传输网络的关键部分。 - **RUS&DUG**:检查RUS(Remote Unit Site)和DUG(Digital Unit Group)的安装和连接状态。 4. **传输检测** - **环回检测**:通过环回测试确认传输线路的完好性,观察ETA指示灯是否长亮。 - **收发检测**:使用发光二极管进行收发功能的测试,确保信号传输正常。 - **BSC端确认**:与BSC(Base Station Controller)端的工程师协作,通过拔插传输线头进行通信验证。 5. **数据包创建** - 按照特定顺序关闭RUS、DUG和风扇等模块,然后断开EC(Equipment Cabinet)和ET(Equipment Terminal)的连接,以便进行数据包的创建和更新。 整个流程强调了从硬件安装到软件配置的全面检查,以及与网络核心部分的通信验证,确保RBS6201基站可以顺利接入网络并提供服务。每个步骤都需要精确执行,任何遗漏或错误都可能导致站点无法正常运行。在执行这些步骤时,操作人员应具备相应的专业知识,并遵循操作手册,以保证系统的稳定性和可靠性。