for i, (image_file, label_file) in enumerate(zip(image_files_shuffled, label_files_shuffled)):
时间: 2024-09-07 16:06:36 浏览: 33
`enumerate(zip(image_files_shuffled, label_files_shuffled))` 是一个迭代器,它会遍历两个列表 `image_files_shuffled` 和 `label_files_shuffled` 中的元素对,同时返回它们的索引 `i`。这个结构通常用于处理有对应关系的数据,如图像文件和其对应的标签。
在Python中,你可以这样使用这段代码来访问每个样本的图片和标签:
```python
for i, (image_file, label_file) in enumerate(zip(image_files_shuffled, label_files_shuffled)):
print(f"Index {i}:")
# 打印图片文件路径
print(f"Image file path: {image_file}")
# 打印标签文件路径
print(f"Label file path: {label_file}")
```
这将在每次循环中依次取出一对图片文件和标签文件,并显示它们的索引以及路径信息。
相关问题
def load_images_and_labels(dataset_dir, image_size): images = [] labels = [] class_labels = os.listdir(dataset_dir) for i, class_label in enumerate(class_labels): class_dir = os.path.join(dataset_dir, class_label) for image_file in os.listdir(class_dir): image_path = os.path.join(class_dir, image_file) image = Image.open(image_path).convert('RGB') image = image.resize(image_size) image = np.array(image) images.append(image) labels.append(i) images = np.array(images) labels = np.array(labels) return images, labels
这段代码的作用是什么?
这段代码定义了一个函数load_images_and_labels,用于加载指定目录下的图像和标签数据。函数的参数包括dataset_dir和image_size,其中dataset_dir表示图像数据所在的目录,image_size表示图像的尺寸。函数返回两个numpy数组,分别为images和labels,分别表示图像数据和对应的标签数据。
具体实现过程为,首先通过os.listdir函数获取dataset_dir下的所有子目录,每个子目录表示一个类别。然后遍历每个子目录,读取该目录下的所有图像文件,并将其转换为RGB格式、调整大小为image_size,并转换为numpy数组。同时,将该图像对应的标签记录在labels数组中,并用整数表示类别。最后,将所有图像和标签数据分别存储在numpy数组images和labels中,并返回这两个数组。
修改以下代码使其能够输出模型预测结果: def open_image(self): file_dialog = QFileDialog() file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)") if file_paths: self.display_images(file_paths) def preprocess_images(self, image_paths): data_transform = transforms.Compose([ transforms.CenterCrop(150), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) self.current_image_paths = [] images = [] for image_path in image_paths: image = Image.open(image_path) image = data_transform(image) image = torch.unsqueeze(image, dim=0) images.append(image) self.current_image_paths.append(image_path) return images def predict_images(self): if not self.current_image_paths: return for i, image_path in enumerate(self.current_image_paths): image = self.preprocess_image(image_path) output = self.model(image) predicted_class = self.class_dict[output.argmax().item()] self.result_labels[i].setText(f"Predicted Class: {predicted_class}") self.progress_bar.setValue((i+1)*20) def display_images(self, image_paths): for i, image_path in enumerate(image_paths): image = QImage(image_path) image = image.scaled(300, 300, Qt.KeepAspectRatio) if i == 0: self.image_label_1.setPixmap(QPixmap.fromImage(image)) elif i == 1: self.image_label_2.setPixmap(QPixmap.fromImage(image)) elif i == 2: self.image_label_3.setPixmap(QPixmap.fromImage(image)) elif i == 3: self.image_label_4.setPixmap(QPixmap.fromImage(image)) elif i == 4: self.image_label_5.setPixmap(QPixmap.fromImage(image))
请注意,代码中的 preprocess_images 函数和 predict_images 函数中的 self.preprocess_image(image_path) 需要修改为 self.preprocess_images([image_path])。修改后的代码如下:
```
def open_image(self):
file_dialog = QFileDialog()
file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)")
if file_paths:
self.display_images(file_paths)
def preprocess_images(self, image_paths):
data_transform = transforms.Compose([
transforms.CenterCrop(150),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.current_image_paths = []
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = data_transform(image)
image = torch.unsqueeze(image, dim=0)
images.append(image)
self.current_image_paths.append(image_path)
return images
def predict_images(self):
if not self.current_image_paths:
return
for i, image_path in enumerate(self.current_image_paths):
image = self.preprocess_images([image_path])
output = self.model(image[0])
predicted_class = self.class_dict[output.argmax().item()]
self.result_labels[i].setText(f"Predicted Class: {predicted_class}")
self.progress_bar.setValue((i+1)*20)
def display_images(self, image_paths):
for i, image_path in enumerate(image_paths):
image = QImage(image_path)
image = image.scaled(300, 300, Qt.KeepAspectRatio)
if i == 0:
self.image_label_1.setPixmap(QPixmap.fromImage(image))
elif i == 1:
self.image_label_2.setPixmap(QPixmap.fromImage(image))
elif i == 2:
self.image_label_3.setPixmap(QPixmap.fromImage(image))
elif i == 3:
self.image_label_4.setPixmap(QPixmap.fromImage(image))
elif i == 4:
self.image_label_5.setPixmap(QPixmap.fromImage(image))
```
阅读全文