TCN时间序列预测代码
时间: 2023-11-12 11:51:44 浏览: 111
时间序列预测的TCN代码可以按照以下步骤进行:
1. 导入所需的库:
```
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.layers import Conv1D
from tensorflow.keras.callbacks import EarlyStopping
```
2. 准备数据:
```
# 加载时间序列数据
data = pd.read_csv('your_data.csv')
# 数据预处理
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
# 划分训练集和测试集
train_size = int(len(scaled_data) * 0.8)
train_data = scaled_data[:train_size]
test_data = scaled_data[train_size:]
```
3. 创建和训练TCN模型:
```
# 定义模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_shape, 1)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(1))
# 编译模型
model.compile(optimizer='adam', loss='mse')
# 定义早停策略
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
# 训练模型
model.fit(train_data, train_labels, validation_data=(test_data, test_labels), epochs=100, callbacks=[early_stopping])
```
4. 进行预测:
```
# 对测试集进行预测
predictions = model.predict(test_data)
# 反缩放预测结果
real_predictions = scaler.inverse_transform(predictions)
```
5. 评估预测结果:
```
# 计算均方误差
mse = mean_squared_error(real_y, real_predictions)
# 计算R2分数
r2 = r2_score(real_y, real_predictions)
# 计算平均相对误差
per_real_loss = (real_y - real_predictions) / real_y
avg_per_real_loss = np.mean(np.abs(per_real_loss))
```
以上是TCN时间序列预测代码的基本步骤。你可以根据自己的数据和需求进行相应的调整和优化。
阅读全文