TCN多特征预测代码
时间: 2024-08-14 13:00:17 浏览: 77
时间卷积网络TCN代码.zip
5星 · 资源好评率100%
TCN(Temporal Convolutional Network,时间卷积网络)是一种用于处理序列数据的深度学习模型,特别适用于时间序列预测任务,如股票价格、气象数据或音频信号分析。在多特征预测中,TCN可以同时考虑多个输入特征,提高预测精度。
以下是一个简单的TCN多特征预测代码示例(基于PyTorch框架),假设我们有一个包含两个特征的时间序列数据集:
```python
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# 假设特征A和B的数据结构
class MultiFeatureDataset(Dataset):
def __init__(self, data_A, data_B, target, seq_len, shift=1):
self.data_A = data_A
self.data_B = data_B
self.target = target
self.seq_len = seq_len
self.shift = shift
def __getitem__(self, idx):
start_idx = idx * self.shift
end_idx = start_idx + self.seq_len
X = torch.stack([self.data_A[start_idx:end_idx], self.data_B[start_idx:end_idx]])
y = self.target[idx + self.shift] # 预测目标是未来一时间步
return X, y
def __len__(self):
return len(self.target) - self.seq_len - self.shift
# 构建TCN模型
class TemporalConvNet(nn.Module):
def __init__(self, input_channels, output_channels, kernel_size, num_layers):
super(TemporalConvNet, self).__init__()
self.tcn = nn.Sequential(
nn.Conv1d(input_channels, output_channels, kernel_size, padding=(kernel_size-1)//2),
nn.ReLU(),
nn.BatchNorm1d(output_channels),
nn.Dropout(0.2),
# 添加更多相同层,num_layers-1次
*[nn.Conv1d(output_channels, output_channels, kernel_size, padding=(kernel_size-1)//2) for _ in range(num_layers-1)],
nn.ReLU(),
nn.BatchNorm1d(output_channels)
)
def forward(self, x):
return self.tcn(x)
# 使用模型
input_channels = 2 # 特征数量
output_channels = 64 # 卷积核数
kernel_size = 3 # 卷积窗口大小
num_layers = 3 # 层数
model = TemporalConvNet(input_channels, output_channels, kernel_size, num_layers)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 创建数据加载器
seq_len = 10 # 序列长度
dataset = MultiFeatureDataset(data_A, data_B, target_data, seq_len)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 训练过程
for epoch in range(num_epochs):
for X, y in dataloader:
pred = model(X)
loss = criterion(pred, y.unsqueeze(-1)) # unsqueeze是为了适应模型期望的维度
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文