y''=0.5*0.1*(-2*sta+2*bta/(y+1)^3)+(y-sta*y^2-bta*y/(y+1))*(1-2*sta*y-bta/(y+1)^2) , y(0)=0, y(50)=2.3980
时间: 2023-12-17 13:05:18 浏览: 151
下面是使用 MATLAB 求解具有边值条件的常微分方程的代码:
```matlab
function dydx = odefunc(x, y)
sta = 0.1;
bta = 0.5;
dydx = 0.5*0.1*(-2*sta+2*bta/(y+1)^3) + (y-sta*y^2-bta*y/(y+1))*(1-2*sta*y-bta/(y+1)^2);
end
function res = boundary_conditions(ya, yb)
res = [ya(1)-0; yb(1)-2.3980];
end
xspan = [0 50];
yguess = [0.5];
solinit = bvpinit(xspan, yguess);
sol = bvp4c(@odefunc, @boundary_conditions, solinit);
x = linspace(0, 50);
y = deval(sol, x);
plot(x, y)
xlabel('x')
ylabel('y')
title('Solution of the ODE with Boundary Conditions')
```
这段代码中,`odefunc` 函数定义了您的常微分方程,`boundary_conditions` 函数定义了边值条件。然后,使用 `bvp4c` 函数通过求解边值问题来计算常微分方程的数值解。最后,使用 `deval` 函数在指定的 x 范围内评估数值解,并将结果绘制出来。
请确保您已经安装了 MATLAB 的优化工具箱(Optimization Toolbox),因为 `bvp4c` 函数属于该工具箱的一部分。
阅读全文
相关推荐


















