uint16_t save_array
时间: 2024-10-17 21:03:45 浏览: 15
`uint16_t save_array`通常是一个用于表示无符号16位整数数组的数据类型声明,这里的`save`可能是对数组数据的一种保存操作。在这个上下文中,它意味着将一个由`uint16_t`类型的元素构成的数组存储到某个内存位置,比如硬盘、文件系统或者是内存缓冲区。这常常出现在嵌入式系统、游戏开发、数值计算等需要紧凑存储数据的场景中。
举个例子,假设我们有一个包含`uint16_t`类型元素的数组arr,保存的过程可以像这样:
```c
void save(uint16_t arr[], int length, char filename[]) {
FILE* file = fopen(filename, "wb");
if (file == NULL) {
// 处理文件打开失败的情况
}
for (int i = 0; i < length; i++) {
fwrite(&arr[i], sizeof(uint16_t), 1, file);
}
fclose(file);
}
```
在这个函数里,`arr[]`是要保存的数组,`length`是数组长度,`filename`是保存文件的路径。函数通过`fwrite`逐个元素地写入到文件中。
相关问题
此代码import os import numpy as np from PIL import Image def process_image(image_path, save_path): # 读取nii文件 image_array = np.load(image_path).astype(np.float32) # 归一化到0-255之间 image_array = (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array)) * 255 # 将数据类型转换为uint8 image_array = image_array.astype(np.uint8) # 将三维图像分成若干个二维图像 for i in range(image_array.shape[0]): image = Image.fromarray(image_array[i]) image.save(os.path.join(save_path, f"{i}.png")) def process_label(label_path, save_path): # 读取nii文件 label_array = np.load(label_path).astype(np.uint8) # 将标签转换为灰度图 label_array[label_array == 1] = 255 label_array[label_array == 2] = 128 # 将三维标签分成若干个二维标签 for i in range(label_array.shape[0]): label = Image.fromarray(label_array[i]) label.save(os.path.join(save_path, f"{i}.png")) # LiTS2017数据集路径 data_path = "C:\\Users\\Administrator\\Desktop\\LiTS2017" # 保存路径 save_path = "C:\\Users\\Administrator\\Desktop\\2D-LiTS2017" # 创建保存路径 os.makedirs(save_path, exist_ok=True) os.makedirs(os.path.join(save_path, "image"), exist_ok=True) os.makedirs(os.path.join(save_path, "mask"), exist_ok=True) # 处理Training Batch 1 image_path = os.path.join(data_path, "Training Batch 1", "volume-{}.npy") for i in range(131): process_image(image_path.format(i), os.path.join(save_path, "image")) # 处理Training Batch 2 label_path = os.path.join(data_path, "Training Batch 2", "segmentation-{}.npy") for i in range(131): process_label(label_path.format(i), os.path.join(save_path, "mask"))出现FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Administrator\\Desktop\\LiTS2017\\Training Batch 1\\volume-0.npy',修复它,并给出完整代码
首先,这个错误提示表明程序找不到第一个npy文件。因此,需要检查路径是否正确。
同时,还需要确保所有的路径和文件名都是正确的。下面是修复后的完整代码:
```python
import os
import numpy as np
from PIL import Image
def process_image(image_path, save_path):
# 读取nii文件
image_array = np.load(image_path).astype(np.float32)
# 归一化到0-255之间
image_array = (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array)) * 255
# 将数据类型转换为uint8
image_array = image_array.astype(np.uint8)
# 将三维图像分成若干个二维图像
for i in range(image_array.shape[0]):
image = Image.fromarray(image_array[i])
image.save(os.path.join(save_path, f"{i}.png"))
def process_label(label_path, save_path):
# 读取nii文件
label_array = np.load(label_path).astype(np.uint8)
# 将标签转换为灰度图
label_array[label_array == 1] = 255
label_array[label_array == 2] = 128
# 将三维标签分成若干个二维标签
for i in range(label_array.shape[0]):
label = Image.fromarray(label_array[i])
label.save(os.path.join(save_path, f"{i}.png"))
# LiTS2017数据集路径
data_path = "C:\\Users\\Administrator\\Desktop\\LiTS2017"
# 保存路径
save_path = "C:\\Users\\Administrator\\Desktop\\2D-LiTS2017"
# 创建保存路径
os.makedirs(save_path, exist_ok=True)
os.makedirs(os.path.join(save_path, "image"), exist_ok=True)
os.makedirs(os.path.join(save_path, "mask"), exist_ok=True)
# 处理Training Batch 1
image_path = os.path.join(data_path, "Training Batch 1", "volume-{}.npy")
for i in range(131):
if os.path.exists(image_path.format(i)):
process_image(image_path.format(i), os.path.join(save_path, "image"))
else:
print(f"{image_path.format(i)} not exists!")
# 处理Training Batch 2
label_path = os.path.join(data_path, "Training Batch 2", "segmentation-{}.npy")
for i in range(131):
if os.path.exists(label_path.format(i)):
process_label(label_path.format(i), os.path.join(save_path, "mask"))
else:
print(f"{label_path.format(i)} not exists!")
```
在这个修复后的代码中,我们添加了对文件是否存在的检查,并输出了相应的提示信息。现在我们可以运行代码进行处理,同时会得到相应的提示信息帮助我们快速定位错误。
这段代码在运行时import SimpleITK as sitkimport numpy as npimport os# 设置文件路径data_path = 'C:/Users/Administrator/Desktop/LiTS2017/'save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017/'if not os.path.exists(save_path): os.makedirs(save_path)# 定义函数将3D图像保存为2D的.png格式def save_image_as_png(image, save_folder, name_prefix): for i in range(image.shape[2]): slice = np.squeeze(image[:, :, i]) slice = slice.astype(np.float32) slice *= 255.0/slice.max() slice = slice.astype(np.uint8) save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png') sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)# 读取Training Batch 1中的图像image_path = os.path.join(data_path, 'Training Batch 1/volume-0.nii')image = sitk.ReadImage(image_path)image_array = sitk.GetArrayFromImage(image)save_folder = os.path.join(save_path, 'image')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(image_array, save_folder, 'img')# 读取Training Batch 2中的标签label_path = os.path.join(data_path, 'Training Batch 2/segmentation-0.nii')label = sitk.ReadImage(label_path)label_array = sitk.GetArrayFromImage(label)# 将标签转换为灰度图并保存label_array[label_array == 1] = 128label_array[label_array == 2] = 255save_folder = os.path.join(save_path, 'mask')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(label_array, save_folder, 'mask')会出现RuntimeWarning: divide by zero encountered in true_divide slice *= 255.0/slice.max()这种情况,修复它
这个 RuntimeWarning 出现的原因是可能存在某些切片上所有像素都是 0,导致在计算 `slice.max()` 时出现了除以 0 的情况。解决这个问题的方法是在计算 `slice.max()` 之前,先判断 `slice` 是否全为 0,如果是,则将 `slice.max()` 设为 1。修改代码如下:
```python
def save_image_as_png(image, save_folder, name_prefix):
for i in range(image.shape[2]):
slice = np.squeeze(image[:, :, i])
slice = slice.astype(np.float32)
if slice.max() == 0:
max_val = 1
else:
max_val = slice.max()
slice *= 255.0/max_val
slice = slice.astype(np.uint8)
save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png')
sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)
```
这样修改后,即使出现某些切片上所有像素都是 0 的情况,也不会出现除以 0 的错误了。
阅读全文