softmax多分类交叉熵
时间: 2023-11-17 14:57:34 浏览: 109
softmax的交叉熵导数推导.docx
softmax多分类交叉熵是一种常用的损失函数,用于多分类问题中。在神经网络中,softmax函数通常被用来将输出转化为概率分布,而交叉熵则用来衡量模型输出的概率分布与真实标签的差异。具体来说,softmax多分类交叉熵损失函数的计算公式为:loss(yhat, y) = -sum(y * log(yhat)),其中yhat是模型的输出,y是真实标签。这个公式的含义是,对于每个样本,将其真实标签对应的概率取log,然后将所有标签的log概率加起来,最后取负数作为损失值。这个损失函数的优化目标是最小化损失值,使得模型的输出概率分布更接近真实标签的分布。在实际应用中,通常使用深度学习框架中提供的softmax多分类交叉熵损失函数,如PyTorch中的torch.nn.CrossEntropyLoss()。
阅读全文