7、Fisher线性判别函数的求解过程

时间: 2024-03-29 16:41:03 浏览: 213
Fisher线性判别函数是一种常用的分类方法,其求解过程如下: 1. 计算各类别的均值向量,即将每一类样本的特征向量相加并取平均值,得到每个类别的均值向量。 2. 计算类内散度矩阵,即将每一类的样本的特征向量与该类别均值向量的差的外积矩阵相加,得到类内散度矩阵。 3. 计算类间散度矩阵,即将各类均值向量的差的外积相加,得到类间散度矩阵。 4. 对类内散度矩阵求逆矩阵。 5. 计算 Fisher 系数向量,即将类内散度矩阵的逆矩阵与类间散度矩阵的乘积与目标变量(类别)的标签向量的乘积。 6. 最后得到 Fisher 线性判别函数,即样本特征向量与 Fisher 系数向量的点积。 以上就是 Fisher 线性判别函数的求解过程。
相关问题

请写出基于matlab的Fisher线性判别函数的模板

以下是基于Matlab的Fisher线性判别函数的模板: ```matlab function [W, b] = fisher_ld(X, Y) % Input: % X: n-by-d data matrix, each row is a data point and each column is a feature % Y: n-by-1 label vector % Output: % W: d-by-1 weight vector of Fisher linear discriminant % b: scalar bias % Compute the mean of each class class_labels = unique(Y); num_classes = length(class_labels); means = zeros(num_classes, size(X, 2)); for i = 1:num_classes means(i, :) = mean(X(Y==class_labels(i), :), 1); end % Compute the within-class scatter matrix Sw = zeros(size(X, 2)); for i = 1:num_classes Xi = X(Y==class_labels(i), :); Si = (Xi - means(i, :))' * (Xi - means(i, :)); Sw = Sw + Si; end % Compute the between-class scatter matrix Sb = zeros(size(X, 2)); for i = 1:num_classes Ni = sum(Y==class_labels(i)); mi = means(i, :); Sb = Sb + Ni * (mi - mean(X, 1))' * (mi - mean(X, 1)); end % Compute the Fisher linear discriminant [W, D] = eig(Sb, Sw); [~, ind] = max(abs(diag(D))); W = real(W(:, ind)); W = W / norm(W, 2); % Compute the bias b = -mean(X * W(Y==class_labels(1), :)' + X * W(Y==class_labels(2), :)', 1) / 2; end ``` 该函数将数据矩阵和标签向量作为输入,并返回Fisher线性判别函数的权重向量和偏置项。函数首先计算每个类别的均值,然后计算类内散布矩阵和类间散布矩阵。接下来,函数通过求解广义特征值问题来计算Fisher线性判别函数的权重向量。最后,函数计算偏置项,使得Fisher线性判别函数在两个类别的中间点处为零。

Fisher 线性判别分析

Fisher 线性判别分析(Fisher Linear Discriminant Analysis, FLDA)是一种监督学习的分类方法。它的目标是找到一个投影方式,可以将样本投影到一条直线上,使得同类样本的投影点尽量接近,异类样本的投影点尽量分开。这条直线称为 Fisher 分类线。 具体地说,FLDA 的过程可以分为以下几步: 1. 计算各类别样本的均值向量,以及所有样本的均值向量。 2. 计算类内散度矩阵(Within-class scatter matrix)和类间散度矩阵(Between-class scatter matrix): 类内散度矩阵 $S_w = \sum_{i=1}^{c}S_i$,其中 $S_i=\sum_{x\in X_i}(x-\mu_i)(x-\mu_i)^T$,$c$ 为类别数,$X_i$ 为第 $i$ 类的样本集合,$\mu_i$ 为第 $i$ 类样本的均值向量。 类间散度矩阵 $S_b = \sum_{i=1}^{c}n_i(\mu_i-\mu)(\mu_i-\mu)^T$,其中 $n_i$ 为第 $i$ 类样本的个数,$\mu$ 为所有样本的均值向量。 3. 计算 Fisher 准则函数 $J(w)=\frac{wS_bw^T}{wS_ww^T}$,其中 $w$ 为投影向量。我们的目标是使 $J(w)$ 最大。 4. 对 $J(w)$ 进行求解,得到投影向量 $w$。 5. 对新的样本进行分类时,将其投影到 $w$ 方向上,根据投影点的位置确定其所属类别。 FLDA 相比于其他线性分类方法(如 PCA)的优势在于,它是基于类别信息进行投影的,因此可以更好地区分不同类别之间的差异,提高分类准确率。缺点在于,FLDA 的前提是各类别的分布满足高斯分布,而且协方差矩阵相等。如果不满足这些条件,FLDA 可能会产生较差的效果。
阅读全文

相关推荐

最新推荐

recommend-type

用Jupyter notebook完成Iris数据集的 Fisher线性分类,并学习数据可视化技术

在本文中,我们将深入探讨如何使用Jupyter Notebook对Iris数据集进行Fisher线性判别分析(Linear Discriminant Analysis, LDA),并学习数据可视化技术。Fisher算法是一种统计方法,主要用于多类别的分类问题,它...
recommend-type

模式识别-FISHER判别硬币问题与感知器

在模式识别中,可能会用到这种方法来求解FISHER判别分析中的最优分类超平面,或者在训练感知器时更新权重。 感知器是最早的机器学习模型之一,它以简单的“开/关”决策机制工作,适用于二分类问题。尽管在给定的...
recommend-type

随机数学模型(一些经典案例分析求解)

Fisher判别法正是利用这种关联性,寻找一种线性组合,使得不同类别的样本能够被最有效地区分。 通过建立利润函数,将广告成本、销售收入与未售出房源的损失三者间的相互作用表达出来,随机数学模型能够指导我们如何...
recommend-type

数学建模的常用方法及思想

判别分析则用于在已知类别的情况下,基于特征数据构建判别函数,对未知类别进行分类,如距离判别法、Fisher 判别法和 Bayes 判别法。 模糊数学处理的是边界不清晰的概念,如模糊分类、模糊相似选择、模糊聚类分析和...
recommend-type

基于Andorid的音乐播放器项目改进版本设计.zip

基于Andorid的音乐播放器项目改进版本设计实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

Windows下操作Linux图形界面的VNC工具

在信息技术领域,能够实现操作系统之间便捷的远程访问是非常重要的。尤其在实际工作中,当需要从Windows系统连接到远程的Linux服务器时,使用图形界面工具将极大地提高工作效率和便捷性。本文将详细介绍Windows连接Linux的图形界面工具的相关知识点。 首先,从标题可以看出,我们讨论的是一种能够让Windows用户通过图形界面访问Linux系统的方法。这里的图形界面工具是指能够让用户在Windows环境中,通过图形界面远程操控Linux服务器的软件。 描述部分重复强调了工具的用途,即在Windows平台上通过图形界面访问Linux系统的图形用户界面。这种方式使得用户无需直接操作Linux系统,即可完成管理任务。 标签部分提到了两个关键词:“Windows”和“连接”,以及“Linux的图形界面工具”,这进一步明确了我们讨论的是Windows环境下使用的远程连接Linux图形界面的工具。 在文件的名称列表中,我们看到了一个名为“vncview.exe”的文件。这是VNC Viewer的可执行文件,VNC(Virtual Network Computing)是一种远程显示系统,可以让用户通过网络控制另一台计算机的桌面。VNC Viewer是一个客户端软件,它允许用户连接到VNC服务器上,访问远程计算机的桌面环境。 VNC的工作原理如下: 1. 服务端设置:首先需要在Linux系统上安装并启动VNC服务器。VNC服务器监听特定端口,等待来自客户端的连接请求。在Linux系统上,常用的VNC服务器有VNC Server、Xvnc等。 2. 客户端连接:用户在Windows操作系统上使用VNC Viewer(如vncview.exe)来连接Linux系统上的VNC服务器。连接过程中,用户需要输入远程服务器的IP地址以及VNC服务器监听的端口号。 3. 认证过程:为了保证安全性,VNC在连接时可能会要求输入密码。密码是在Linux系统上设置VNC服务器时配置的,用于验证用户的身份。 4. 图形界面共享:一旦认证成功,VNC Viewer将显示远程Linux系统的桌面环境。用户可以通过VNC Viewer进行操作,如同操作本地计算机一样。 使用VNC连接Linux图形界面工具的好处包括: - 与Linux系统的图形用户界面进行交互,便于进行图形化操作。 - 方便的远程桌面管理,尤其适用于需要通过图形界面来安装软件、编辑配置文件、监控系统状态等场景。 - 跨平台操作,允许Windows用户在不离开他们熟悉的操作系统环境下访问Linux服务器。 除了VNC之外,还有一些其他的图形界面远程访问工具,例如: - RDP(Remote Desktop Protocol):通常与Windows远程桌面连接使用,但在Linux中也有相应的实现(如FreeRDP)。 - TeamViewer、AnyDesk等:这些工具提供了跨平台的远程桌面访问能力,虽然它们不是专为Linux设计,但它们都能很好地支持Linux系统。 在使用这些工具时,用户应该注意以下几点: - 安全性:确保使用强密码以及加密连接,防止未经授权的访问。 - 网络环境:需要保证网络的稳定性和带宽,以获得良好的远程桌面体验。 - 更新与维护:定期更新客户端和服务器端软件,确保安全性以及新功能的使用。 总结以上内容,Windows连接Linux图形界面的工具是实现跨平台远程管理的有效手段,特别是对于需要图形化操作的场景。VNC Viewer是一个应用广泛且成熟的工具,但选择适合自身需求的远程桌面工具对于提高工作效率与安全性至关重要。
recommend-type

【SketchUp Ruby API:从入门到精通】

# 摘要 本论文深入介绍了SketchUp Ruby API的使用与开发,为用户提供了一套从基础到进阶再到高级特性的完整学习路径。文章首先介绍了SketchUp Ruby API的基本概念、结构以及如何编写基础插件,并通过实例演示了3D模型的创建和编辑、用户界面定制等进阶应用。接着,探讨了高级特性,例如材质渲染、网络功能以及AP
recommend-type

VMware虚拟机打开虚拟网络编辑器出现由于找不到vnetlib.dll,无法继续执行代码。重新安装程序可能会解决问题

<think>好的,我需要帮助用户解决VMware虚拟机中缺少vnetlib.dll导致无法打开虚拟网络编辑器的问题。用户提到已经尝试过重新安装程序,但可能没有彻底卸载之前的残留文件。根据提供的引用资料,特别是引用[2]、[3]、[4]、[5],问题通常是由于VMware卸载不干净导致的。 首先,我应该列出彻底卸载VMware的步骤,包括关闭相关服务、使用卸载工具、清理注册表和文件残留,以及删除虚拟网卡。然后,建议重新安装最新版本的VMware。可能还需要提醒用户在安装后检查网络适配器设置,确保虚拟网卡正确安装。同时,用户可能需要手动恢复vnetlib.dll文件,但更安全的方法是通过官方安
recommend-type

基于Preact的高性能PWA实现定期天气信息更新

### 知识点详解 #### 1. React框架基础 React是由Facebook开发和维护的JavaScript库,专门用于构建用户界面。它是基于组件的,使得开发者能够创建大型的、动态的、数据驱动的Web应用。React的虚拟DOM(Virtual DOM)机制能够高效地更新和渲染界面,这是因为它仅对需要更新的部分进行操作,减少了与真实DOM的交互,从而提高了性能。 #### 2. Preact简介 Preact是一个与React功能相似的轻量级JavaScript库,它提供了React的核心功能,但体积更小,性能更高。Preact非常适合于需要快速加载和高效执行的场景,比如渐进式Web应用(Progressive Web Apps, PWA)。由于Preact的API与React非常接近,开发者可以在不牺牲太多现有React知识的情况下,享受到更轻量级的库带来的性能提升。 #### 3. 渐进式Web应用(PWA) PWA是一种设计理念,它通过一系列的Web技术使得Web应用能够提供类似原生应用的体验。PWA的特点包括离线能力、可安装性、即时加载、后台同步等。通过PWA,开发者能够为用户提供更快、更可靠、更互动的网页应用体验。PWA依赖于Service Workers、Manifest文件等技术来实现这些特性。 #### 4. Service Workers Service Workers是浏览器的一个额外的JavaScript线程,它可以拦截和处理网络请求,管理缓存,从而让Web应用可以离线工作。Service Workers运行在浏览器后台,不会影响Web页面的性能,为PWA的离线功能提供了技术基础。 #### 5. Web应用的Manifest文件 Manifest文件是PWA的核心组成部分之一,它是一个简单的JSON文件,为Web应用提供了名称、图标、启动画面、显示方式等配置信息。通过配置Manifest文件,可以定义PWA在用户设备上的安装方式以及应用的外观和行为。 #### 6. 天气信息数据获取 为了提供定期的天气信息,该应用需要接入一个天气信息API服务。开发者可以使用各种公共的或私有的天气API来获取实时天气数据。获取数据后,应用会解析这些数据并将其展示给用户。 #### 7. Web应用的性能优化 在开发过程中,性能优化是确保Web应用反应迅速和资源高效使用的关键环节。常见的优化技术包括但不限于减少HTTP请求、代码分割(code splitting)、懒加载(lazy loading)、优化渲染路径以及使用Preact这样的轻量级库。 #### 8. 压缩包子文件技术 “压缩包子文件”的命名暗示了该应用可能使用了某种形式的文件压缩技术。在Web开发中,这可能指将多个文件打包成一个或几个体积更小的文件,以便更快地加载。常用的工具有Webpack、Rollup等,这些工具可以将JavaScript、CSS、图片等资源进行压缩、合并和优化,从而减少网络请求,提升页面加载速度。 综上所述,本文件描述了一个基于Preact构建的高性能渐进式Web应用,它能够提供定期天气信息。该应用利用了Preact的轻量级特性和PWA技术,以实现快速响应和离线工作的能力。开发者需要了解React框架、Preact的优势、Service Workers、Manifest文件配置、天气数据获取和Web应用性能优化等关键知识点。通过这些技术,可以为用户提供一个加载速度快、交互流畅且具有离线功能的应用体验。
recommend-type

从停机到上线,EMC VNX5100控制器SP更换的实战演练

# 摘要 本文详细介绍了EMC VNX5100控制器的更换流程、故障诊断、停机保护、系统恢复以及长期监控与预防性维护策略。通过细致的准备工作、详尽的风险评估以及备份策略的制定,确保控制器更换过程的安全性与数据的完整性。文中还阐述了硬件故障诊断方法、系统停机计划的制定以及数据保护步骤。更换操作指南和系统重启初始化配置得到了详尽说明,以确保系统功能的正常恢复与性能优化。最后,文章强调了性能测试