请用pytorch来实现一段用LSTM来预测的代码
时间: 2023-06-06 08:04:34 浏览: 95
基于pytorch利用LSTM实现对股票价格预测源码+使用说明.zip
好的,我可以为你提供一个使用PyTorch实现的LSTM预测代码段,请参考下面的代码:
```python
import torch
import torch.nn as nn
# 定义LSTM模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.fc1 = nn.Linear(hidden_size, output_size)
def forward(self, input):
hidden = (torch.zeros(1, 1, self.hidden_size),
torch.zeros(1, 1, self.hidden_size))
lstm_out, hidden = self.lstm(input.view(len(input), 1, -1), hidden)
output = self.fc1(lstm_out.view(len(input), -1))
return output[-1]
# 定义数据集
data = torch.FloatTensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
target = torch.FloatTensor([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
# 实例化模型
input_size = 1
hidden_size = 2
output_size = 1
model = LSTMModel(input_size, hidden_size, output_size)
# 设置超参数
learning_rate = 0.1
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(1000):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 使用模型进行预测
input = torch.FloatTensor([1.0])
output = model(input)
print(output.item())
```
该代码段实现了一个简单的使用LSTM模型来预测数列下一个数的问题。如果你有任何问题,请随时问我!
阅读全文